UVA 12169 Disgruntled Judge【扩展欧几里德】

题意:随机选取x1,a,b,根据公式xi=(a*xi-1+b)%10001得到一个长度为2*n的序列,奇数项作为输入,求偶数项,若有多种,随机输出一组答案。

思路:a和b均未知,可以考虑枚举a和b,时间复杂度为10000*10000*100,但是题目数据比较水,这样枚举也是能过的。高效的做法是:枚举a,根据以下公式求出b。

a*x1+b - MOD*y1 = x2;

a*x2+b - MOD*y2 = x3;

解得:

x3 - a*a*x1=(a+1)*b + MOD * y;

该方程为关于变量b的模线性方程 ,用扩展欧几里得算法解出一个解b0,(当gcd(a+1,MOD)==1) 则解出的为一个同余系;

b = b0 + MOD*k (k为任意整数);(该方程对应了 b = b0 + MOD' * k ,其中MOD' 为MOD/ gcd(a+1,MOD) ); 只需要检验一个b即可

但是当gcd(a+1,MOD)不等1时,直接用b0求解是有问题的因为解不在是MOD的同余系而是MOD‘的同余系;

所以正解应该是算出b0然后解出0 - 10000范围内的 可行b 然后检验; 算法复杂度为 O(nlogn*100);

#include<stdio.h>
#include<string.h>
const int mod=;
typedef long long ll;
ll x[];
ll ex_gcd(ll a,ll b,ll &x,ll &y){
if(!b){
x=,y=;
return a;
}
int ans=ex_gcd(b,a%b,y,x);
y-=a/b*x;
return ans;
}
int main(){
int n,i;
while(~scanf("%d",&n)){
n*=;
for(i=;i<n;i+=){
scanf("%lld",&x[i]);
}
long long a,b,c,d,y;
for(a=;;a++){
c=x[]-a*a*x[];
d=ex_gcd(a+,mod,b,y);
if(c%d) continue;
b=b*c/d;
for(i=;i<=n;i++){
if(i&){
if(x[i]!=(a*x[i-]+b)%mod)
break;
}else
x[i]=(a*x[i-]+b)%mod;
}
if(i>n) break;
}
for(i=;i<=n;i+=)
printf("%lld\n",x[i]);
}
return ;
}

http://www.ithao123.cn/content-4532209.html

上一篇:Java 将字节数组转化为16进制的多种方案


下一篇:FTP上传下载文件(函数简易版)