cassandra中批量写入的操作称为batch,通过batch操作可以将多个写入请求合并为一个请求。这样有如下好处:
- 把多次更新操作合并为一次请求,减少客户端和服务端的网络交互。
- batch中同一个partition key的操作具有隔离性。
- 默认的LOGGED类型可以保证batch中的所有操作要么(最终)全部成功,要么全部失败。也就是原子性。
本文介绍batch的使用和注意事项。并分析batch操作原子性的实现。
batch使用
cqlsh中使用batch
在cqlsh中如下语句可以提交一个batch(例子来自cassandra官方文档):
BEGIN BATCH
INSERT INTO users (userid, password, name) VALUES ('user2', 'ch@ngem3b', 'second user');
UPDATE users SET password = 'ps22dhds' WHERE userid = 'user3';
INSERT INTO users (userid, password) VALUES ('user4', 'ch@ngem3c');
DELETE name FROM users WHERE userid = 'user1';
APPLY BATCH;
在java应用中使用batch
下面的例子示意了如何使用java客户端实现批量写入:
PreparedStatement statement = session.prepare("insert into test(intcol,boolcol) values(?,?)");
BatchStatement batchStatement = new BatchStatement(Type.UNLOGGED);
for( int i = 0; i < 5; i++ ) {
BoundStatement boundStmt = statement.bind();
boundStmt.setInt(0, i);
boundStmt.setBool(1, false);
batchStatement.add(boundStmt);
}
session.execute(batchStatement);
注意事项
- UNLOGGED/COUNTER batch操作不保证原子性,可能会部分成功。
- batch大小(指的是所有statement的内容总的大小)不能超过batch_size_fail_threshold_in_kb,否则会失败;另外,如果batch大小如果超过batch_size_warn_threshold_in_kb,batch会成功,但会收到一个警告提示batch过大,如果日志中频繁看到这样的警告,需要考虑batch的使用是否正确。
- 不建议在UNLOGGED batch中包含多个partition key,因为这样虽然客户端和服务端之间的交互变少,但是coordinator和其他节点的交互并没有减少。如果partition key的数量超出了unlogged_batch_across_partitions_warn_threshold,会收到警告提示。顺便说一句,cassandra的copy命令在写入时用的就是UNLOGGED batch,在调用batch之前对请求按照key所在的节点做分组,然后再对每个分组调用batch。
- 表的gc_grace_seconds配置会影响batch的回放。在回放batch时,会检查涉及的所有表的gc_grace_seconds,如果当前时间已经超出了其中某个表的gc_grace_seconds,则整个batch都不会回放直接删除。另外,如果表的gc_grace_seconds为0,会收到警告提示。
- 如果在batch中使用了条件更新,需要注意只有所有更新操作的条件都满足时batch才会成功,只要有一个不满足batch就会失败;另外,所有更新都只能针对同一个partition key,这是因为cassandra中cas操作只能提供partition级别的一致性保证。
关于batch的原子性
UNLOGGED和COUNTER类型的batch是不保证原子性的,这种batch类型的处理是简单的把写请求分发到对应的节点上面,所以可能会出现部分成功的情况。以下分析LOGGED batch的处理,说明batch是如何做到原子性的。
简单来说,LOGGED batch的处理分三个步骤:
第一步 写入batches表
batches表的结构如下:
"CREATE TABLE %s ("
+ "id timeuuid,"
+ "mutations list<blob>,"
+ "version int,"
+ "PRIMARY KEY ((id)))")
我们可以看出一个batch的所有mutations都在一行记录里面。这样的设计保证了batchlog写入的原子性,要么成功,要么失败。
第二步 分发mutation
这一步处理和UNLOGGED batch差不多,就是把每个mutation操作发送到他对应的节点上面去。比UNLOGGED batch多出的一个步骤是,如果所有mutation都成功执行了,会删除到batches表中对应的记录。
第三部 回放batchlog
如果第二步失败了,cassandra仍然可以保证batch最终成功。有一个线程池会以10s执行一次replayFailedBatches回放batch。如果batch中的请求全部执行成功就会删除batch。
一些细节:
- batch中的mutate要么成功发到endpoint,要么成功写入hint并落盘然后才会被删除。
- 为了避免回放正在执行中的batch,回放时只会选择BATCHLOG_REPLAY_TIMEOUT之前的记录。BATCHLOG_REPLAY_TIMEOUT的值可以通过系统属性“cassandra.batchlog.replay_timeout_in_ms”来设置,如果没有设置,默认值write_request_timeout_in_ms的两倍。
从上面的分析可以看出,batch的原子性主要体现在:
- 如果batch log写入失败,那么batch的操作全部失败。
- 如果batch log写入成功,即使某个mutation没有成功,cassandra也会(在gc_grace_seconds之前)一直回放batch,保证最终全部成功。
入群邀约
为了营造一个开放的 Cassandra 技术交流,我们建立了微信群公众号和钉钉群,为广大用户提供专业的技术分享及问答,定期开展专家技术直播,欢迎大家加入。另外阿里云提供免费Cassandra试用:https://www.aliyun.com/product/cds
钉钉群入群链接:https://c.tb.cn/F3.ZRTY0o
微信群公众号: