from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error boston = datasets.load_boston() x, y = boston.data, boston.target x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=10010) reg = LinearRegression() reg.fit(x_train, y_train) y_predict = reg.predict(x_test) print(mean_squared_error(y_test, y_predict))