- package lhz.algorithm.chapter.six;
- /**
- * “堆排序”,《算法导论》6.4章节
- * 利用之前实现的构建MaxHeap和MaxHeapify算法完成排序。
- * 伪代码:
- * HEAPSORT(A)
- * 1 BUILD-MAX-HEAP(A)
- * 2 for i ← length[A] downto 2
- * 3 do exchange A[1] ↔ A[i]
- * 4 heap-size[A] ← heap-size[A] - 1
- * 5 MAX-HEAPIFY(A, 1)
- * @author lihzh(苦逼coder) * 本文地址:http://mushiqianmeng.blog.51cto.com/3970029/738164 */
- public class HeapSort {
- private static int[] input = new int[] {16, 14, 10, 8, 7, 9, 3, 2, 4, 1};
- public static void main(String[] args) {
- //堆排序
- heapSort();
- //打印数组
- printArray();
- }
- /**
- * 堆排序,《算法导论》原文摘要:
- * The heapsort algorithm starts by using BUILD-MAX-HEAP to build a max-heap on the input
- * array A[1 n], where n = length[A]. Since the maximum element of the array is stored at the
- * root A[1], it can be put into its correct final position by exchanging it with A[n].
- * If we now "discard" node n from the heap (by decrementing heap-size[A]), we observe that
- * A[1 (n -1)] can easily be made into a max-heap. The children of the root remain max-heaps,
- * but the new root element may violate the max-heap property. All that is needed to restore
- * the maxheap property, however, is one call to MAX-HEAPIFY(A, 1), which leaves a max-heap
- * in A[1 (n - 1)]. The heapsort algorithm then repeats this process for the max-heap of size
- * n - 1 down to a heap of size 2.
- * 复杂度:
- * 由之前分析可知,buildMaxHeap复杂度为O(n lg n),运行一次。
- * maxHeapify的复杂度为O(lg n),运行n-1次。
- * 综上,复杂度为O(n lg n)。
- */
- private static void heapSort() {
- int length = input.length;
- //构造max-heap
- buildMaxHeap(input, length);//交换位置
- for (int i = length - 1; i > 0; i--) {
- int temp = input[i];
- input[i] = input[0];
- input[0] = temp;
- maxHeapify(input, 1, i);
- }
- }
- private static void buildMaxHeap(int[] array, int heapSize) {
- for (int i = heapSize / 2; i > 0; i--) {
- maxHeapify(array, i, heapSize);
- }
- }
- private static void maxHeapify(int[] array, int index, int heapSize) {
- int l = index * 2;
- int r = l + 1;
- int largest;
- //如果左叶子节点索引小于堆大小,比较当前值和左叶子节点的值,取值大的索引值
- if (l <= heapSize && array[l-1] > array[index-1]) {
- largest = l;
- } else {
- largest = index;
- }
- //如果右叶子节点索引小于堆大小,比较右叶子节点和之前比较得出的较大值,取大的索引值
- if (r <= heapSize && array[r-1] > array[largest-1]) {
- largest = r;
- }
- //交换位置,并继续递归调用该方法调整位置。
- if (largest != index) {
- int temp = array[index-1];
- array[index-1] = array[largest-1];
- array[largest-1] = temp;
- maxHeapify(array, largest, heapSize);
- }
- }
- private static void printArray() {
- for (int i : input) {
- System.out.print(i + " ");
- }
- }
- }
本文转自mushiqianmeng 51CTO博客,原文链接:http://blog.51cto.com/mushiqianmeng/738164,如需转载请自行联系原作者