拓端tecdat|R语言非线性回归beta系数估算股票市场的风险分析亚马逊AMZN股票和构建投资组合

原文链接:http://tecdat.cn/?p=24680 

原文出处:拓端数据部落公众号

Beta 假设反映了一种工具对例如市场的风险。但是,您可以通过各种方式估算此度量。

你可以收缩你的估计来稳定它。另一个方面是这种风险度量的非线性。在红色和绿色的时间里,对市场的敏感性不相同。从结果中我们可以看到:

  1.   plot('AMZN' main="AMZN接近于市场收益率的收益率",
  2.    
  3.   xlab="市场收益率",pch=20, axes = F)
  4.    
  5.   ng <- l1coef[2]-l1coef[3]
  6.    
  7.   ps <- l1coef[2]

拓端tecdat|R语言非线性回归beta系数估算股票市场的风险分析亚马逊AMZN股票和构建投资组合

拓端tecdat|R语言非线性回归beta系数估算股票市场的风险分析亚马逊AMZN股票和构建投资组合

拓端tecdat|R语言非线性回归beta系数估算股票市场的风险分析亚马逊AMZN股票和构建投资组合

拓端tecdat|R语言非线性回归beta系数估算股票市场的风险分析亚马逊AMZN股票和构建投资组合

我们在这里看到的是,当市场下跌时,AMZN与市场的相关性更强,而当市场上涨时,相关性更弱。有相关的,也有相关的结构。谷歌-金融的β是相关的,它可以是在整个分布中是一样的。就像现在这样,你不希望有β值等于1,它是市场下跌时 beta=0.78 和市场上涨时和beta=0.94 的平均值。如果你是长线,反过来就很好,一个符号在绿色的时间段里反弹,在糟糕的日子里只缓慢下跌。 

我尝试了其他一些金融股,看看这是否是典型的,这是正日(红色)和负日(蓝色)系数的条形图。

  1.   for (i in 1:l){
  2.   geSybols(symi], from=tart, o=endut.asign = )
  3.   # 白天的平均价格
  4.    
  5.   prv[1:ltdt0,),i]=avp
  6.    
  7.   }
  8.    
  9.    
  10.    
  11.   pol <- ifese(e[,'SPY']>0,ret['SP'],0)
  12.    
  13.    
  14.    
  15.    
  16.   for (i in 1:(l-1)){ # 最后一个是市场,因此 l-1。
  17.    
  18.   o[i,] <- noibe
  19.    
  20.   }
  21.    
  22.   # 颜色
  23.    
  24.   col1
  25.    
  26.   col2
  27.    
  28.   barpot(co[,1,add=T)


拓端tecdat|R语言非线性回归beta系数估算股票市场的风险分析亚马逊AMZN股票和构建投资组合

 花旗是唯一一个在市场下跌过程中具有较强关联性的股票,大多数在整个分布过程中与市场具有相当稳定的关联性,在这方面,摩根士丹利是不错的,可以持有。




拓端tecdat|R语言非线性回归beta系数估算股票市场的风险分析亚马逊AMZN股票和构建投资组合

我们看到与 AMZN 完全相反,在下跌的日子里比在上涨的日子里更陡峭。自然地,看看使用这个标准构建的投资组合如何表现。


拓端tecdat|R语言非线性回归beta系数估算股票市场的风险分析亚马逊AMZN股票和构建投资组合

最受欢迎的见解

1.R语言对S&P500股票指数进行ARIMA + GARCH交易策略

2.R语言改进的股票配对交易策略分析SPY—TLT组合和中国股市投资组合

3.R语言时间序列:ARIMA GARCH模型的交易策略在外汇市场预测应用

4.TMA三均线期指高频交易策略的R语言实现

5.r语言多均线量化策略回测比较

6.用R语言实现神经网络预测股票实例

7.r语言预测波动率的实现:ARCH模型与HAR-RV模型

8.R语言如何做马尔科夫转换模型markov switching model

9.matlab使用Copula仿真优化市场风险

上一篇:第20组 Beta 冲刺(5/6)张天成


下一篇:4163-60-4,beta-D-Galactose pentaacetate,beta-D-半乳糖五乙酸酯