64. [Mcoi2018]终末之诗(上)

Description

求出\(k^{k^{k^{k^{...}}}} \pmod p\) 的结果


扩展欧拉定理:$$ax=a{min(x,x%\varphi(p)+\varphi(p))}(mod \ p)$$

题中由于是无限层,所以答案就是 \(x\)

由于\(\varphi(\varphi(\varphi(...)))\)总有一次会变成\(1\)的,那时候\(x\%p=0\)

那么就每次递归求解\(x\%\varphi(p)\)这一块就好了啊


#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define LL long long
#define max(a,b) ((a)>(b)? (a):(b))
#define min(a,b) ((a)<(b)? (a):(b)) using namespace std; LL i,m,n,j,k,a[10001],p,t; LL eular(LL x)
{
LL now=x, r=sqrt(now);
for(LL i=2;i<=r;i++)
{
if(x%i!=0) continue;
now=now/i*(i-1);
while(x%i==0) x/=i;
}
if(x!=1) now=now/x*(x-1);
return now;
} LL quick(LL x,LL m,LL M)
{
LL t=1;
for(m;m>1;m>>=1, x=x*x%M)
if(m&1) t=t*x%M;
return x*t%M;
} LL dfs(LL now)
{
if(now==1) return 0;
LL phi=eular(now);
return quick(n,dfs(phi)+phi,now);
} int main()
{
scanf("%lld",&t);
for(t;t;t--)
{
scanf("%lld%lld",&n,&p);
printf("%lld\n",dfs(p));
}
}
上一篇:Java课程设计 猜数游戏个人博客


下一篇:LINUX 内核文档地址