尼姆博弈
1、问题模型:有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
2、解决思路:用(a,b,c)表示某种局势,显证(0,0,0)是第一种奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。
搞定这个问题需要把必败态的规律找出:(a,b,c)是必败态等价于a^b^c=0(^表示异或运算)。
证明:(1)任何p(a,b,c)=0的局面出发的任意局面(a,b,c’);一定有p(a,b,c’)不等于0。否则可以得到c=c’。
(2)任何p(a,b,c)不等于0的局面都可以走向 p(a,b,c)=0的局面
(3)对于 (4,9,13) 这个容易验证是奇异局势
其中有两个8,两个4,两个1,非零项成对出现,这就是尼姆和为 零的本质。别人要是拿掉13里的8或者1,那你就拿掉对应的9 中的那个8或者1;别人要是拿 掉13里的4,你就拿掉4里的4; 别人如果拿掉13里的3,就把10作分解,然后想办法满 足非零项成对即可。
3、推广一:如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为 a^b,即可,因为有如下的运算结果: a^b^(a^b)=(a^a)^(b^b)=0^0=0。要将c 变为a^b,只从 c中减去 c-(a^b)
4、推广二:当石子堆数为n堆时,则推广为当对每堆的数目进行亦或之后值为零是必败态。
HDU_1850
Being a Good Boy in Spring Festival
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7260 Accepted Submission(s): 4400
春节回家 你能做几天好孩子吗
寒假里尝试做做下面的事情吧
陪妈妈逛一次菜场
悄悄给爸爸买个小礼物
主动地 强烈地 要求洗一次碗
某一天早起 给爸妈用心地做回早餐
如果愿意 你还可以和爸妈说
咱们玩个小游戏吧 ACM课上学的呢~
下面是一个二人小游戏:桌子上有M堆扑克牌;每堆牌的数量分别为Ni(i=1…M);两人轮流进行;每走一步可以任意选择一堆并取走其中的任意张牌;桌子上的扑克全部取光,则游戏结束;最后一次取牌的人为胜者。
现在我们不想研究到底先手为胜还是为负,我只想问大家:
——“先手的人如果想赢,第一步有几种选择呢?”
#include <iostream>
using namespace std; int main(){
int m;
while(cin >> m && m){
int num[];
int flag = ;
for(int i = ;i < m;i++){
cin >> num[i];
flag ^= num[i];
}
if(flag == ){
cout << << endl;
continue;
}
int ans = ;
for(int i = ;i < m; i++)
if(num[i] > (flag^num[i]))// num[i]中拿 num[i] - (flag^num[i])
//num[i]的值必须大于除了num[i]以外的n-1个数的异或值才可以,
//只有大于才能通过num[i]的减少使得所有数的异或值为0
ans++;
cout << ans << endl;
}
}