Queue 应用——拓扑排序

1. 拓扑排序

题目描述:对一个有向无环图(Directed Acyclic Graph, DAG)G进行拓扑排序,是将G中所有顶点排成线性序列,是的图中任意一堆顶点u和v,若边(u, v)在E(G)中,则u在线性序列中出现在v之前。

如:

Queue 应用——拓扑排序

分析:

1)首先我们要将图G存入一个邻接矩阵中,保存该图;

2)计算每个顶点的入度,存储一个一维数组中;

3)从有向图中选择一个没有前驱(即入度为0)的节点并输出;

4)从图中删除该节点,并且删除从该节点发出的全部有向边;

5)重复上面两个步骤,直至剩余的图中不再存在没有前驱的节点为止。

进一步思考:

1)拓扑排序的本质是不断输出入度为0的点,这种方法可以用于判断图中是否有环;

2)拓扑排序其实给出的是节点之间的偏序关系;

Answer:

class TopologySort {
private int[][] aja = {{0,1,0,0,0,1,1,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{1,0,0,1,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,1,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,1,0,0,0,0,0,0,0,0},
{0,0,0,0,1,0,0,0,0,1,0,0,0},
{0,0,0,0,0,0,1,0,0,0,0,0,0},
{0,0,0,0,0,0,0,1,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,1,1,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0}}; public int[][] getEdge() {
return aja;
} /**
* 该函数根据邻接矩阵计算每个节点的入度
* @param edge
* @return
*/
public int[] getInDegree(int[][] edge) {
int len = edge.length;
int[] inDegree = new int[len];
for(int j=0; j<len; j++) {
int count = 0;
for(int i=0; i<len; i++)
if(edge[i][j] == 1)
count++;
inDegree[j] = count;
}
return inDegree;
} public List<Integer> topoSort(int[][] edge) {
List<Integer> res = new ArrayList<Integer>();
int len = edge.length;
int[] inDegree = getInDegree(edge); Queue<Integer> q = new LinkedList<Integer>();
//将入度为0的节点压入队列中
for(int i=0; i<inDegree.length; i++)
if(inDegree[i] == 0) {
q.add(i);
res.add(i);
} //对于队列中的元素(入度为0的元素)
while(!q.isEmpty()) {
int element = q.remove();
for(int j=0; j<len; j++) {
if(edge[element][j] == 1) {
inDegree[j]--;
if(inDegree[j] == 0) {
q.add(j);
res.add(j);
}
}
}
}
return res;
}
}
上一篇:oracle expdp impdp 导入导出备份


下一篇:RMAN备份与恢复之初入茅庐