自然语言处理:第六十三章 阿里Qwen2 & 2.5系列-Qwen2.5系列

Qwen2.5 相比 Qwen2 主要做了以下 改进

  1. 全面性能提升 :Qwen2.5 在 Qwen2 的基础上进行了大幅度升级,包括从 1.5B 到 72B 参数规模的不同版本,每个版本都针对特定需求进行了优化。特别是 14B/32B 版本,是最适合单卡部署的大小。Qwen2.5 在自然语言理解、代码编写、数学解题以及多语言处理等多个方面都有显著增强。
  2. 更大的训练数据集 :Qwen2.5 的所有尺寸都在最新的大规模数据集上进行了预训练,该数据集包含多达 18T tokens。与 Qwen2 相比,Qwen2.5 获得了显著更多的知识(MMLU:85+),并在编程能力(HumanEval 85+)和数学能力(MATH 80+)方面有了大幅提升。
  3. 更强的指令遵循能力 :新模型在指令执行、生成长文本(超过 8K 标记)、理解结构化数据(例如表格)以及生成结构化输出特别是 JSON 方面取得了显著改进。Qwen2.5 模型总体上对各种 system prompt 更具适应性,增强了角色扮演实现和聊天机器人的条件设置功能。
  4. 长文本支持能力 :与 Qwen2 类似,Qwen2.5 语言模型支持高达 128K tokens,并能生成最多 8K tokens 的内容。
  5. 强大的多语言能力 :Qwen2.5 同样保持了对包括中文、英文、法文、西班牙文、葡萄牙文、德文、意大利文、俄文、日文、韩文、越南文、泰文、阿拉伯文等 29 种以上语言的支持。
  6. 专业领域的专家语言模型能力增强 :即用于编程的 Qwen2.5-Coder 和用于数学的 Qwen2.5-Math,相比其前身 CodeQwen1.5 和 Qwen2-Math 有了实质性的改进。具体来说,Qwen2.5-Coder 在包含 5.5 T tokens 编程相关数据上进行了训练,使即使较小的编程专用模型也能在编程评估基准测试中表现出媲美大型语言模型的竞争力。同时,Qwen2.5-Math 支持中文和英文,并整合了多种推理方法,包括 CoT(Chain of Thought)、PoT(Program of Thought)和 TIR(Tool-Integrated Reasoning)。
  7. 全面开源 :Qwen2.5 系列在原有开源同尺寸(0.5/1.5/7/72B)基础上,还新增了 14B、32B 以及 3B 的模型。同时,通义还推出了 Qwen-Plus 与 Qwen-Turbo 版本,可以通过阿里云大模型服务平台的 API 服务进行体验。
  8. 预训练数据集更大更高质量 :从原本 7 万亿个 token 扩展到最多 18 万亿个 token,成为目前训练数据最多的开源模型之一。
  9. 多方面的能力增强 :比如获得更多知识、数学编码能力以及更符合人类偏好。在指令跟踪、长文本生成(从 1k 增加到 8K 以上 token)、结构化数据理解(如表格)和结构化输出生成(尤其是 JSON)方面均有显著提升。


注:Qwen2.5 模型结构是和 Qwen2 一致的,从 下面的配置文件里面就知道了。对源码感兴趣的可以跟读下面两篇文章:

  • 《Qwen2源码阅读——环境准备和说明》
  • 《Qwen2源码阅读——核心代码跟读》
上一篇:【LC】2529. 正整数和负整数的最大计数(二分解法)