数字图像处理(c++ opencv):图像复原与重建-常见的滤波方法--自适应滤波器-自适应局部降噪滤波器

自适应局部降噪滤波器(Adaptive, Local Noise Reduction Filter)原理步骤

步骤

(1)计算噪声图像的方差 在这里插入图片描述

(2)计算滤波器窗口内像素的均值 在这里插入图片描述和方差 在这里插入图片描述

(3)利用原理公式:在这里插入图片描述

在这里插入图片描述

原理

(1)若 在这里插入图片描述为零,则滤波器仅返回(x, y)处的值g。因为噪声为零时,(x, y)处的g等于f.

(2)若局部方差与高度相关,则滤波器返回(x, y)处的一个接近于g的值。高局部方差通常与边缘相关,且应保留这些边缘。

(3)若两个方差相等,则希望滤波器返回Sxy中像素的算术平均值。当局部区域的性质与整个图像的性质相同时会出现这个条件,且平均运算会降低局部噪声。

#include<iostream>
#include<opencv2/opencv.hpp>

using namespace cv;
using namespace std;

//定义滤波函数
void AdaptiveLocalNoiseReductionFilter(Mat img_input, Mat& img_output, int m, int n); //输入图像,输出图像,m,n为滤波器大小。

int main()
{
	Mat image, image_gray, image_output;   //定义输入图像,灰度图像,输出图像
	image = imread("高斯噪声.png");  //读取图像;
	if (image.empty())
	{
		cout << "读取错误" << endl;
		return -1;
	}
	imshow("image", image);

	//转换为灰度图像
	cvtColor(image, image_gray, COLOR_BGR2GRAY);
	imshow("image_gray", image_gray);

	//自己编写的滤波函数
	AdaptiveLocalNoiseReductionFilter(image_gray, image_output, 7, 7);
	imshow("image_output", image_output);

	waitKey(0);  //暂停,保持图像显示,等待按键结束
	return 0;
}


//实现滤波函数
void AdaptiveLocalNoiseReductionFilter(Mat img_input, Mat& img_output, int m, int n)
{
	img_output = img_input.clone();
	Mat sortarray(1, m * n, CV_8U);  //局部像素灰度矩阵

	//1、为了保证图像的边缘也能够被滤波,这里首先扩展图像边缘,扩展方法为镜像
	copyMakeBorder(img_input, img_input, (m - 1) / 2, (m - 1) / 2, (n - 1) / 2, (n - 1) / 2, BORDER_REFLECT);

	//2、计算图像方差
	Mat mat_mean1, mat_stddev1, mat_mean2, mat_stddev2; //图像均值标准差矩阵,局部均值标准差矩阵
	meanStdDev(img_input, mat_mean1, mat_stddev1); //meanStdDev获取矩阵的平均值和标准差
	double stddev1, mean2, stddev2;  //图像标准差,局部均值和标准差
	stddev1 = mat_stddev1.at<double>(0, 0);//图像标准差


	//3、自适应局部降噪滤波
	for (int i = (m - 1) / 2; i < img_input.rows - (m - 1) / 2; i++)
	{
		for (int j = (n - 1) / 2; j < img_input.cols - (n - 1) / 2; j++)
		{
			int h = 0;
			for (int x = -(m - 1) / 2; x <= (m - 1) / 2; x++)
			{
				for (int y = -(n - 1) / 2; y <= (n - 1) / 2; y++)
				{
					sortarray.at<uchar>(h) = img_input.at<uchar>(i + x, j + y);
					h++;
				}
			}

			//计算局部均值和方差
			meanStdDev(sortarray, mat_mean2, mat_stddev2);
			stddev2 = mat_stddev2.at<double>(0, 0);  //局部标准差
			mean2 = mat_mean2.at<double>(0, 0);  //局部均值

			//滤波器
			double k = (stddev1 * stddev1) / (stddev2 * stddev2 + 0.00001);
			if (k <= 1)
			{
				img_output.at<uchar>(i - (m - 1) / 2, j - (n - 1) / 2) = img_input.at<uchar>(i, j) - k * (img_input.at<uchar>(i, j) - mean2);
			}
			else
			{
				img_output.at<uchar>(i - (m - 1) / 2, j - (n - 1) / 2) = mean2;
			}
		}
	}
}

在这里插入图片描述

上一篇:Linux笔记---调试工具GDB(gdb)


下一篇:学习HTML第二十七天