6.2 对角化矩阵(2)

五、不能对角化的矩阵

假设 λ \lambda λ A A A 的一个特征值,我们从两个方面发现这个事实:

  1. 特征向量(几何的): A x = λ x A\boldsymbol x=\lambda\boldsymbol x Ax=λx 有非零解。
  2. 特征值(代数的): A − λ I A-\lambda I AλI 的行列式为零。

数字 λ \lambda λ 可能是一个单一的特征值也可能是重复的特征值,我们想要知道它的重复数(multiplicity)。大多数特征值的重复度 M = 1 M=1 M=1(单一的特征值),有一条特征向量的直线,且 det ⁡ ( A − λ I ) \det(A-\lambda I) det(AλI) 没有多重因子。
但是也有一些例外的矩阵,它的特征值可能重复(repeated),则有两种不同的方式来计算它的重复度,对于每一个 λ \lambda λ 总是有 GM ≤ AM \textrm{GM}\leq \textrm{AM} GMAM

  1. ( 几何重数   Geometric Multiplicity = GM ) \color{blue}(几何重数\,\textrm{Geometric Multiplicity = GM})\kern 10pt (几何重数Geometric Multiplicity = GM)计算 λ \lambda λ 对应的无关特征向量的个数。则 GM \textrm{GM} GM 就是 A − λ I A-\lambda I AλI 零空间的维度。
  2. ( 代数重数   Algebraic Multiplicity = AM ) \color{blue}(代数重数\,\textrm{Algebraic Multiplicity = AM})\kern 10pt (代数重数Algebraic Multiplicity = AM) AM \textrm{AM} AM 计算的是 λ \lambda λ 在特征值中的重复次数,检验 det ⁡ ( A − λ I ) = 0 \det(A-\lambda I)=0 det(AλI)=0 n n n 个根。

如果 A A A 有特征值 λ = 4 , 4 , 4 \lambda=4,4,4 λ=4,4,4,则特征值有 AM = 3 \textrm{AM}=3 AM=3,且 GM = 1 , 2 \textrm{GM} = 1,2 GM=1,2 3 3 3
下面的矩阵 A A A 是一个标准的麻烦例子,它的特征值 λ = 0 \lambda=0 λ=0 是重复的,这是一个双重特征值( AM = 2 \textrm{AM}=2 AM=2),但是只有一个特征向量 GM = 1 \textrm{GM}=1 GM=1 AM = 2 GM = 1 A = [ 0 1 0 0 ]   有   det ⁡ ( A − λ I ) = ∣ − λ 1 0 − λ ∣ = λ 2 λ = 0 , 0   但是只 有   1   个特征向量 \begin{matrix}\pmb{\textrm{AM}=2}\\\pmb{\textrm{GM}=1}\end{matrix}\kern 15ptA=\begin{bmatrix}0&1\\0&0\end{bmatrix}\,有\,\det(A-\lambda I)=\begin{vmatrix}-\lambda&1\\0&-\lambda\end{vmatrix}=\lambda^2\kern 15pt\begin{matrix}\pmb{\lambda=0,0\,但是只}\\\pmb{有\,1\,个特征向量}\end{matrix} AM=2GM=1A=[0010]det(AλI)= λ01λ =λ2λ=0,0但是只1个特征向量由于 λ 2 = 0 \lambda^2=0 λ2=0 有双重根,所以理论上应该有两个特征向量,双重因子 λ 2 \lambda^2 λ2 使得 AM = 2 \textrm{AM}=2 AM=2,但是只有 1 1 1 个特征向量 x = ( 1 , 0 ) \boldsymbol x=(1,0) x=(1,0) GM = 1 \textrm{GM}=1 GM=1 GM \textrm{GM} GM 小于 AM \textrm{AM} AM 时,此时特征向量的不足使得 A A A 无法对角化。
下面的三个矩阵同样是特征向量不足,它们重复的特征值是 λ = 5 \lambda=5 λ=5,迹是 10 10 10 行列式是 25 25 25 A = [ 5 1 0 5 ] 和 A = [ 6 − 1 1 4 ] 和 A = [ 7 2 − 2 3 ] A=\begin{bmatrix}5&1\\0&5\end{bmatrix}\kern 5pt和\kern 5ptA=\begin{bmatrix}6&-1\\1&\kern 7pt4\end{bmatrix}\kern 5pt和\kern 5ptA=\begin{bmatrix}\kern 7pt7&2\\-2&3\end{bmatrix} A=[5015]A=[6114]A=[7223]这三个矩阵都有 det ⁡ ( A − λ I ) = ( λ − 5 ) 2 \det(A-\lambda I)=(\lambda-5)^2 det(AλI)=(λ5)2,代数重数是 AM = 2 \textrm{AM}=2 AM=2,但是每个 A − 5 I A-5I A5I 的秩都为 1 1 1,所以几何重数是 GM = 1 \textrm{GM}=1 GM=1。对应 λ = 5 \lambda=5 λ=5 的只有一条特征向量的直线,这些矩阵都不能对角化。

六、主要内容总结

  1. 如果 A A A n n n 个无关的特征向量 x 1 , x 2 , ⋯   , x n \boldsymbol x_1,\boldsymbol x_2,\cdots,\boldsymbol x_n x1,x2,,xn,它们进入到 X X X 的列。 A   被   X   对角化 X − 1 A X = Λ 和 A = X Λ X − 1 \pmb{A\,被\,X\,对角化}\kern 15ptX^{-1}AX=\Lambda\kern 5pt和\kern 5ptA=X\Lambda X^{-1} AX对角化X1AX=ΛA=XΛX1
  2. A A A 的幂是 A k = X Λ k X − 1 A^k=X\Lambda^kX^{-1} Ak=XΛkX1,在 X X X 中的特征向量不变。
  3. A k A^k Ak 的特征值是矩阵
上一篇:Nginx中实现流量控制(限制给定时间内HTTP请求的数量)示例