让我们来看一个经典的例子,抛硬币实验。假设我们抛硬币的结果只有两种可能:正面(我们记为1)和反面(我们记为0)。每次抛硬币是一个独立的随机试验,结果的分布是二项分布。
现在,我们进行一系列实验。在每个实验中,我们不止抛一次硬币,而是连续抛硬币n次,并记录正面出现的次数。为了直观展示中心极限定理,我们可以重复进行多个这样的实验(例如,1000次),每次都记录下正面出现的比例。例如,做10个抛10次硬币的实验,在4个左右的实验中,有5次朝上,如图所示:
根据中心极限定理,不管单次抛硬币的结果分布如何,只要我们重复足够多次抛硬币操作,并且记录下正面出现的比例,这些比例的分布会趋近于正态分布。具体来说,随着实验次数的增加,这些比例的分布会越来越接近于一个均值为μ=0.5、方差为σ2/n(2指平方)的正态分布,其中σ2=0.25是单次抛硬币结果的方差,n是每次实验中抛硬币的次数。
抛硬币实验说明,即使基础数据(正面或反面)不服从正态分布,大量独立实验的平均结果(或求和结果)也将趋向于正态分布。