深度学习的核心是神经网络。神经网络可以看成一组“神经元”组成的网络结构,每个神经元模拟人脑中的神经细胞。神经网络通过层层计算,将输入数据(如图像、文本)转化为可以预测输出的特征。
每层神经网络通常包含多个神经元,这些神经元通过特定的权重和偏置来影响输入数据的特征提取过程。通过反向传播算法,网络的权重不断调整,以便在输出端实现最小的预测误差。
示例应用:图像分类,如用神经网络区分猫和狗的图片。下方是一个简单的示例代码,通过深度学习模型来分类手写数字:
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
# 数据预处理
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_data = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True)
# 定义神经网络模型
class SimpleNN(nn.Module):
def __init__(self):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(28*28, 128) # 输入层到隐藏层
self.fc2 = nn.Linear(128, 64) # 隐藏层
self.fc3 = nn.Linear(64, 10) # 输出层
def forward(self, x):
x = x.view(-1, 28*28)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 训练模型
model = SimpleNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
for epoch in range(10): # 训练10个周期
for images, labels in train_loader:
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
print("训练完成")