Python——脚本实现datax全量同步mysql到hive

# coding=utf-8 import json import getopt import os import sys import pymysql # MySQL 相关配置,需根据实际情况作出修改 mysql_host = "XXXXXX" mysql_port = "XXXX" mysql_user = "XXX" mysql_passwd = "XXXXXX" # HDFS NameNode 相关配置,需根据实际情况作出修改 hdfs_nn_host = "XXXXXX" hdfs_nn_port = "XXXX" # 生成配置文件的目标路径,可根据实际情况作出修改 output_path = "/XXX/XXX/XXX" def get_connection(): return pymysql.connect(host=mysql_host, port=int(mysql_port), user=mysql_user, password=mysql_passwd) def get_mysql_meta(database, table): connection = get_connection() cursor = connection.cursor() sql = "SELECT COLUMN_NAME,DATA_TYPE from information_schema.COLUMNS WHERE TABLE_SCHEMA=%s AND TABLE_NAME=%s ORDER BY ORDINAL_POSITION" cursor.execute(sql, [database, table]) fetchall = cursor.fetchall() cursor.close() connection.close() return fetchall def get_mysql_columns(database, table): return list(map(lambda x: x[0], get_mysql_meta(database, table))) def get_hive_columns(database, table): def type_mapping(mysql_type): mappings = { "bigint": "bigint", "int": "bigint", "smallint": "bigint", "tinyint": "bigint", "decimal": "string", "double": "double", "float": "float", "binary": "string", "char": "string", "varchar": "string", "datetime": "string", "time": "string", "timestamp": "string", "date": "string", "text": "string" } return mappings[mysql_type] meta = get_mysql_meta(database, table) return list(map(lambda x: {"name": x[0], "type": type_mapping(x[1].lower())}, meta)) def generate_json(source_database, source_table): job = { "job": { "setting": { "speed": { "channel": 3 }, "errorLimit": { "record": 0, "percentage": 0.02 } }, "content": [{ "reader": { "name": "mysqlreader", "parameter": { "username": mysql_user, "password": mysql_passwd, "column": get_mysql_columns(source_database, source_table), "splitPk": "", "connection": [{ "table": [source_table], "jdbcUrl": ["jdbc:mysql://" + mysql_host + ":" + mysql_port + "/" + source_database] }] } }, "writer": { "name": "hdfswriter", "parameter": { "defaultFS": "hdfs://" + hdfs_nn_host + ":" + hdfs_nn_port, "fileType": "text", "path": "${targetdir}", "fileName": source_table, "column": get_hive_columns(source_database, source_table), "writeMode": "append", "fieldDelimiter": "\t", "compress": "gzip" } } }] } } if not os.path.exists(output_path): os.makedirs(output_path) with open(os.path.join(output_path, ".".join([source_database, source_table, "json"])), "w") as f: json.dump(job, f) def main(args): source_database = "" source_table = "" options, arguments = getopt.getopt(args, '-d:-t:', ['sourcedb=', 'sourcetbl=']) for opt_name, opt_value in options: if opt_name in ('-d', '--sourcedb'): source_database = opt_value if opt_name in ('-t', '--sourcetbl'): source_table = opt_value generate_json(source_database, source_table) if __name__ == '__main__': main(sys.argv[1:])
上一篇:Pytorch|李沐动手学深度学习:数学基础(一)


下一篇:基于SSM的微信小程序博客管理系统(博客1)