强化学习笔记之【DDPG算法】

强化学习笔记之【DDPG算法】


文章目录

  • 强化学习笔记之【DDPG算法】
      • 前言:
      • 原论文伪代码
      • DDPG算法
      • DDPG 中的四个网络
      • 代码核心更新公式

前言:

本文为强化学习笔记第二篇,第一篇讲的是Q-learning和DQN

就是因为DDPG引入了Actor-Critic模型,所以比DQN多了两个网络,网络名字功能变了一下,其它的就是软更新之类的小改动而已

本文初编辑于2024.10.6

****主页:https://blog.****.net/rvdgdsva

博客园主页:https://www.cnblogs.com/hassle

博客园本文链接:

真 · 图文无关

原论文伪代码

  • 上述代码为DDPG原论文中的伪代码

DDPG算法

需要先看:

Deep Reinforcement Learning (DRL) 算法在 PyTorch 中的实现与应用【DDPG部分】【没有在选择一个新的动作的时候,给policy函数返回的动作值增加一个噪音】【critic网络与下面不同】

深度强化学习笔记——DDPG原理及实现(pytorch)【DDPG伪代码部分】【这个跟上面的一样没有加噪音】【critic网络与上面不同】

【深度强化学习】(4) Actor-Critic 模型解析,附Pytorch完整代码【选看】【Actor-Critic理论部分】


如果需要给policy函数返回的动作值增加一个噪音,实现如下

def select_action(self, state, noise_std=0.1):
    state = torch.FloatTensor(state.reshape(1, -1))
    action = self.actor(state).cpu().data.numpy().flatten()
    
    # 添加噪音,上面两个文档的代码都没有这个步骤
    noise = np.random.normal(0, noise_std, size=action.shape)
    action = action + noise
    
    return action


DDPG 中的四个网络

注意!!!这个图只展示了Critic网络的更新,没有展示Actor网络的更新

  • Actor 网络(策略网络)
    • 作用:决定给定状态 ss 时,应该采取的动作 a=π(s)a=π(s),目标是找到最大化未来回报的策略。
    • 更新:基于 Critic 网络提供的 Q 值更新,以最大化 Critic 估计的 Q 值。
  • Target Actor 网络(目标策略网络)
    • 作用:为 Critic 网络提供更新目标,目的是让目标 Q 值的更新更为稳定。
    • 更新:使用软更新,缓慢向 Actor 网络靠近。
  • Critic 网络(Q 网络)
    • 作用:估计当前状态 ss 和动作 aa 的 Q 值,即 Q(s,a)Q(s,a),为 Actor 提供优化目标。
    • 更新:通过最小化与目标 Q 值的均方误差进行更新。
  • Target Critic 网络(目标 Q 网络)
    • 作用:生成 Q 值更新的目标,使得 Q 值更新更为稳定,减少振荡。
    • 更新:使用软更新,缓慢向 Critic 网络靠近。

大白话解释:

​ 1、DDPG实例化为actor,输入state输出action
​ 2、DDPG实例化为actor_target
​ 3、DDPG实例化为critic_target,输入next_state和actor_target(next_state)经DQN计算输出target_Q
​ 4、DDPG实例化为critic,输入state和action输出current_Q,输入state和actor(state)【这个参数需要注意,不是action】经负均值计算输出actor_loss

​ 5、current_Q 和target_Q进行critic的参数更新
​ 6、actor_loss进行actor的参数更新

action实际上是batch_action,state实际上是batch_state,而batch_action != actor(batch_state)

因为actor是频繁更新的,而采样是随机采样,不是所有batch_action都能随着actor的更新而同步更新

Critic网络的更新是一发而动全身的,相比于Actor网络的更新要复杂要重要许多


代码核心更新公式

t a r g e t   ‾ Q = c r i t i c   ‾ t a r g e t ( n e x t   ‾ s t a t e , a c t o r   ‾ t a r g e t ( n e x t   ‾ s t a t e ) ) t a r g e t   ‾ Q = r e w a r d + ( 1 − d o n e ) × g a m m a × t a r g e t   ‾ Q . d e t a c h ( ) target\underline{~}Q = critic\underline{~}target(next\underline{~}state, actor\underline{~}target(next\underline{~}state)) \\target\underline{~}Q = reward + (1 - done) \times gamma \times target\underline{~}Q.detach() target Q=critic target(next state,actor target(next state))target Q=reward+(1done)×gamma×target Q.detach()

  • 上述代码与伪代码对应,意为计算预测Q值

c r i t i c   ‾ l o s s = M S E L o s s ( c r i t i c ( s t a t e , a c t i o n ) , t a r g e t   ‾ Q ) c r i t i c   ‾ o p t i m i z e r . z e r o   ‾ g r a d ( ) c r i t i c   ‾ l o s s . b a c k w a r d ( ) c r i t i c   ‾ o p t i m i z e r . s t e p ( ) critic\underline{~}loss = MSELoss(critic(state, action), target\underline{~}Q) \\critic\underline{~}optimizer.zero\underline{~}grad() \\critic\underline{~}loss.backward() \\critic\underline{~}optimizer.step() critic loss=MSELoss(critic(state,action),target Q)critic optimizer.zero grad()critic loss.backward()critic optimizer.step()

  • 上述代码与伪代码对应,意为使用均方误差损失函数更新Critic

a c t o r   ‾ l o s s = − c r i t i c ( s t a t e , a c t o r ( s t a t e ) ) . m e a n ( ) a c t o r   ‾ o p t i m i z e r . z e r o   ‾ g r a d ( ) a c t o r   ‾ l o s s . b a c k w a r d ( ) a c t o r   ‾ o p t i m i z e r . s t e p ( ) actor\underline{~}loss = -critic(state,actor(state)).mean() \\actor\underline{~}optimizer.zero\underline{~}grad() \\ actor\underline{~}loss.backward() \\ actor\underline{~}optimizer.step() actor loss=critic(state,actor(state)).mean()actor optimizer.zero grad()actor loss.backward()actor optimizer.step()

  • 上述代码与伪代码对应,意为使用确定性策略梯度更新Actor

c r i t i c   ‾ t a r g e t . p a r a m e t e r s ( ) . d a t a = ( t a u × c r i t i c . p a r a m e t e r s ( ) . d a t a + ( 1 − t a u ) × c r i t i c   ‾ t a r g e t . p a r a m e t e r s ( ) . d a t a ) a c t o r   ‾ t a r g e t . p a r a m e t e r s ( ) . d a t a = ( t a u × a c t o r . p a r a m e t e r s ( ) . d a t a + ( 1 − t a u ) × a c t o r   ‾ t a r g e t . p a r a m e t e r s ( ) . d a t a ) critic\underline{~}target.parameters().data=(tau \times critic.parameters().data + (1 - tau) \times critic\underline{~}target.parameters().data) \\ actor\underline{~}target.parameters().data=(tau \times actor.parameters().data + (1 - tau) \times actor\underline{~}target.parameters().data) critic target.parameters().data=(tau×critic.parameters().data+(1tau)×critic target.parameters().data)actor target.parameters().data=(tau×actor.parameters().data+(1tau)×actor target.

上一篇:python学习-怎么在Pycharm写代码