[YDOI R1] Necklace - 洛谷
因为是方案数求和
我们考虑计算每种珠子单独贡献的方案数有
因为有二项式定理
构造
因为n不取0,便有
时间复杂度
modint + qmi code
#include <bits/stdc++.h>
#define INF (1ll<<60)
#define eps 1e-6
using namespace std;
typedef long long ll;
typedef long long LL;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef unsigned long long ull;
typedef vector<vector<int> > vii;
typedef vector<vector<vector<int> > > viii;
typedef vector<ll> vl;
typedef vector<vector<ll> > vll;
typedef vector<double> vd;
typedef vector<vector<double> > vdd;
#define time mt19937_64 rnd(chrono::steady_clock::now().time_since_epoch().count());//稳定随机卡牛魔 ull
const int mod=1e9+7;
template<class T>
constexpr T power(T a, LL b) {
T res = 1;
for (; b; b /= 2, a *= a) {
if (b % 2) {
res *= a;
}
}
return res;
}
template<int P>
struct MInt {
int x;
constexpr MInt() : x{} {}
constexpr MInt(LL x) : x{norm(x % getMod())} {}
static int Mod;
constexpr static int getMod() {
if (P > 0) {
return P;
} else {
return Mod;
}
}
constexpr static void setMod(int Mod_) {
Mod = Mod_;
}
constexpr int norm(int x) const {
if (x < 0) {
x += getMod();
}
if (x >= getMod()) {
x -= getMod();
}
return x;
}
constexpr int val() const {
return x;
}
explicit constexpr operator int() const {
return x;
}
constexpr MInt operator-() const {
MInt res;
res.x = norm(getMod() - x);
return res;
}
constexpr MInt inv() const {
assert(x != 0);
return power(*this, getMod() - 2);
}
constexpr MInt &operator*=(MInt rhs) & {
x = 1LL * x * rhs.x % getMod();
return *this;
}
constexpr MInt &operator+=(MInt rhs) & {
x = norm(x + rhs.x);
return *this;
}
constexpr MInt &operator-=(MInt rhs) & {
x = norm(x - rhs.x);
return *this;
}
constexpr MInt &operator/=(MInt rhs) & {
return *this *= rhs.inv();
}
friend constexpr MInt operator*(MInt lhs, MInt rhs) {
MInt res = lhs;
res *= rhs;
return res;
}
friend constexpr MInt operator+(MInt lhs, MInt rhs) {
MInt res = lhs;
res += rhs;
return res;
}
friend constexpr MInt operator-(MInt lhs, MInt rhs) {
MInt res = lhs;
res -= rhs;
return res;
}
friend constexpr MInt operator/(MInt lhs, MInt rhs) {
MInt res = lhs;
res /= rhs;
return res;
}
friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
LL v;
is >> v;
a = MInt(v);
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
return os << a.val();
}
friend constexpr bool operator==(MInt lhs, MInt rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(MInt lhs, MInt rhs) {
return lhs.val() != rhs.val();
}
};
template<>
int MInt<0>::Mod = 1e9 + 7;
template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();
constexpr int P = 1e9 + 7;
using Z = MInt<P>;
const int N=2e5+9;
Z inv[N],f[N],invf[N];
//组合数
void init(){
inv[1]=1;
for(int i=2;i<N;i++){
inv[i]=inv[mod%i]*(mod-mod/i);
}
f[0]=1,invf[0]=1;
for(int i=1;i<N;i++){
f[i]=f[i-1]*i;
invf[i]=invf[i-1]*inv[i];
}
}
Z C(ll n,ll m){
if(n<m || m<0){
return 0;
}
return f[n]*invf[m]*invf[n-m];
}
Z qmi(Z a,ll b){
Z res=1;
while(b){
if(b&1){
res=res*a;
}
b>>=1;
a=a*a;
}
return res;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr), cout.tie(nullptr);
int n;
cin>>n;
vi a(n+1);
ll sum=0;
for(int i=1;i<=n;i++){
cin>>a[i];
sum+=a[i];
}
vi v(n+1);
for(int i=1;i<=n;i++){
cin>>v[i];
}
Z ans=0;
for(int i=1;i<=n;i++){
ans+=qmi(2,sum-a[i])*(qmi(v[i]+1,a[i])-1);
}
cout<<ans<<'\n';
return 0;
}