三角学

三角学(Trigonometry)是数学的一个分支,主要研究三角形的边长与角度之间的关系。三角学在几何学、物理学、工程学等多个领域中有广泛的应用。以下是三角学的一些基本概念和公式:

基本概念

  1. 直角三角形:一个角为90度的三角形。
  2. 斜边:直角三角形中最长的边,对应于直角的对边。
  3. 对边:某个角的对边。
  4. 邻边:某个角的邻边。

三角函数

  1. 正弦函数 (sin) sin ⁡ ( θ ) = 对边 斜边 \sin(θ) = \frac{对边}{斜边} sin(θ)=斜边对边
  2. 余弦函数 (cos) cos ⁡ ( θ ) = 邻边 斜边 \cos(θ) = \frac{邻边}{斜边} cos(θ)=斜边邻边
  3. 正切函数 (tan) tan ⁡ ( θ ) = 对边 邻边 \tan(θ) = \frac{对边}{邻边} tan(θ)=邻边对边

倒数三角函数

  1. 余割函数 (csc) csc ⁡ ( θ ) = 1 sin ⁡ ( θ ) \csc(θ) = \frac{1}{\sin(θ)} csc(θ)=sin(θ)1
  2. 正割函数 (sec) sec ⁡ ( θ ) = 1 cos ⁡ ( θ ) \sec(θ) = \frac{1}{\cos(θ)} sec(θ)=cos(θ)1
  3. 余切函数 (cot) cot ⁡ ( θ ) = 1 tan ⁡ ( θ ) \cot(θ) = \frac{1}{\tan(θ)} cot(θ)=tan(θ)1

常用三角公式

  1. sin ⁡ 2 ( θ ) + cos ⁡ 2 ( θ ) = 1 \sin^2(θ) + \cos^2(θ) = 1 sin2(θ)+cos2(θ)=1
  2. 1 + tan ⁡ 2 ( θ ) = sec ⁡ 2 ( θ ) 1 + \tan^2(θ) = \sec^2(θ) 1+tan2(θ)=sec2(θ)
  3. 1 + cot ⁡ 2 ( θ ) = csc ⁡ 2 ( θ ) 1 + \cot^2(θ) = \csc^2(θ) 1+cot2(θ)=csc2(θ)

常用角度的三角函数值

角度(θ) sin ⁡ ( θ ) \sin(\theta) sin(θ) cos ⁡ ( θ ) \cos(θ) cos(θ) tan ⁡ ( θ ) \tan(θ) tan(θ)
0 1 0
30° 1 2 \frac{1}{2} 21 3 2 \frac{\sqrt{3}}{2} 23 1 3 \frac{1}{\sqrt{3}} 3 1
45° 2 2 \frac{\sqrt{2}}{2} 22 2 2 \frac{\sqrt{2}}{2} 22 1
60° 3 2 \frac{\sqrt{3}}{2} 23 1 2 \frac{1}{2} 21 3 \sqrt{3} 3
90° 1 1 1 0 0 0 ∞ ∞

应用

  1. 解三角形:利用已知的角度和边长求解未知的角度和边长。
  2. 波动和振动:正弦和余弦函数在描述波动和振动现象中具有重要作用。
  3. 导航与定位:在GPS定位和航海中,三角函数用于计算位置和方向。
上一篇:React18+Redux+antd 项目实战 JS


下一篇:mysql索引优化