在本文中,我们探讨了实例归一化在低级视觉任务中的作用。 具体来说,我们提出了一个新颖的块:半实例归一化块(HIN 块),以提高图像恢复网络的性能。基于HINBlock,我们设计了一个简单而强大的多级网络,名为HINet,它由两个子网络组成。 在HIN Block的帮助下,HINet在各种图像恢复任务上超越了最先进的技术(SOTA)。对于图像去噪,我们在 SIDD 数据集上的 PSNR 超过了它 0.11dB 和 0.28dB,其乘法累加器运算 (MAC) 仅为 7.5% 和 30%,加速分别为 6.8 倍和 2.9 倍。对于图像去模糊,我们在 REDS 和 GoPro 数据集上获得了相当的性能,其 MAC 为 22.5%,加速率为 3.3 倍。 对于图像去雨,我们在多个数据集的平均结果上超过了 0.3 dB,加速比为 1.4 倍。 借助 HINet,我们在 NTIRE 2021 图像去模糊挑战赛 - Track2 中获得了第一名。 JPEG 伪影,PSNR 为 29.70。 代码可在 https://github.com/megviimodel/HINet 获取。