前言
运算法则
- 实数指数幂的运算性质如下:此时\(a>0\),\(b>0\),\(m,n\in R\)
公式:\(a^m\cdot a^n=a^{m+n}\);\((a^m)^n=(a^n)^m=a^{mn}\);\((a\cdot b)^n=a^n\cdot b^n\);\((\cfrac{a}{b})^n=\cfrac{a^n}{b^n}=a^n\cdot b^{-n}\);
- 指数幂运算的一般原则
(1).有括号的先算括号里的,无括号的先做指数运算.
(2).先乘除后加减,负指数幂化成正指数幂的倒数.
(3).底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.
(4).若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.
典例剖析
解析:原式=\([(0.3)^3]^{-\frac{1}{3}}-[(\cfrac{1}{7})^{2}]^{-1}+[(\cfrac{5}{3})^2]^{\frac{1}{2}}-1\)
\(=\cfrac{10}{3}-49+\cfrac{5}{3}-1=-45\)
解:原式=\(\cfrac{\left(\left(a b^{2}\right)^{\frac{1}{3}} \cdot a^{3} \cdot b^{2}\right)^{\frac{1}{2}}}{b^{\frac{1}{3}} \cdot a^{\frac{2}{3}} \cdot b^{2}}=a^{\frac{1}{6}+\frac{3}{2}-\frac{2}{3}} b^{\frac{1}{3}+1-\frac{1}{3}-2}=\cfrac{a}{b}\)
解析:原式=\(\left(\cfrac{3}{2}\right)^{-\frac{1}{3}}+2^{\frac{3}{4}} \times 2^{\frac{1}{4}}+2^{2} \times 3^{3}-\left(\cfrac{2}{3}\right)^{\frac{1}{3}}=\left(\cfrac{2}{3}\right)^{\frac{1}{3}}+2+4 \times 27-\left(\cfrac{2}{3}\right)^{\frac{1}{3}}=110\) .
解析:原式=\(\cfrac{1}{2}-4 \times 16+\sqrt{2}+1-\sqrt{2}=\cfrac{1}{2}-64+1=\cfrac{1}{2}-63=-\cfrac{125}{2}\)
解析:原式=\(108+1-7+\pi-3=99+\pi\)
解析:原式=\(\cfrac{\left(a^{\frac{1}{2}}-1\right) \cdot\left(a+a^{\frac{1}{2}}+1\right)}{a+a^{\frac{1}{2}}+1}-\cfrac{a^{\frac{3}{2}}-a+a-a^{\frac{1}{2}}-a^{\frac{3}{2}}+a^{\frac{1}{2}}-a+1}{a-1}\)
\(=a^{\frac{1}{2}}-1-\cfrac{1-a}{a-1}=a^{\frac{1}{2}}\)
解析:若 \(x+x^{-1}=3\), 则 \(\left(x+x^{-1}\right)^{2}=9\), 即 \(x^{2}+x^{-2}=7\)
\(\left(x^{\frac{1}{2}}+x^{-\frac{1}{2}}\right)^{2}=x+2+x^{-1}=5\),
且因为 \(x+x^{-1}=3>0\), 所以 \(x>0\), \(x^{\frac{1}{2}}+x^{-\frac{1}{2}}=\sqrt{5}\)
\(x^{\frac{3}{2}}+x^{-\frac{3}{2}}=\left(x^{\frac{1}{2}}+x^{-\frac{1}{2}}\right)\left(x+x^{-1}-1\right)=2\sqrt{5}\)
所以 \(\cfrac{x^{\frac{3}{2}}+x^{-\frac{3}{2}}-3}{x^{2}+x^{-2}-6}=\cfrac{2\sqrt{5}-3}{7-6}=2 \sqrt{5}-3\)