C++:map和set类

关联式容器

在初阶阶段,我们已经接触过STL中的部分容器,比如:vector、list、deque、
forward_list(C++11)等,这些容器统称为序列式容器,因为其底层为线性序列的数据结构,里面
存储的是元素本身。那什么是关联式容器?它与序列式容器有什么区别?
关联式容器也是用来存储数据的,与序列式容器不同的是,里面存储的是 <key, value> 结构的
键值对,在数据检索时比序列式容器效率更高

键值对

用来表示具有一一对应关系的一种结构,该结构中一般只包含两个成员变量 key value key
表键值, value 表示与 key 对应的信息 。比如:现在要建立一个英汉互译的字典,那该字典中必然
有英文单词与其对应的中文含义,而且,英文单词与其中文含义是一一对应的关系,即通过该应
该单词,在词典中就可以找到与其对应的中文含义。

树形结构的关联式容器

根据应用场景的不桶,STL总共实现了两种不同结构的管理式容器:树型结构与哈希结构。树型结 构的关联式容器主要有四种:mapsetmultimapmultiset。这四种容器的共同点是:使用平衡搜索树(即红黑树)作为其底层结果,容器中的元素是一个有序的序列.下面一依次介绍每一个容器

set

1. set是按照一定次序存储元素的容器
2. 在set中,元素的value也标识它(value就是key,类型为T),并且每个 value必须是唯一的
set中的元素 不能在容器中修改 (元素总是const),但是可以从容器中插入或删除它们。
3. 在内部,set中的元素总是按照其内部比较对象(类型比较)所指示的特定严格弱排序准则进行
排序。
4. set容器通过key访问单个元素的速度通常比unordered_set容器慢,但它们允许根据顺序对
子集进行直接迭代。
5. set在底层是用二叉搜索树(红黑树)实现的。
注意:
1. 与map/multimap不同,map/multimap中存储的是真正的键值对<key, value>,set中只放
value,但在底层实际存放的是由<value, value>构成的键值对。
2. set中插入元素时,只需要插入value即可,不需要构造键值对。
3. set中的元素不可以重复(因此可以使用set进行去重)。
4. 使用set的迭代器遍历set中的元素,可以得到有序序列
5. set中的元素默认按照小于来比较
6. set中查找某个元素,时间复杂度为:$log_2 n$
7. set中的元素不允许修改(为什么?)
8. set中的底层使用二叉搜索树(红黑树)来实现

set的使用

set 的构造
函数声明
功能介绍
set (const Compare& comp = Compare(), const Allocator& = Allocator() );
构造空的 set
set (InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator() );
[first, last)
间中的元素构造
set
set ( const set<Key,Compare,Allocator>& x);
set 的拷贝构造

set 的迭代器
函数声明
功能介绍
iterator begin()
返回 set 中起始位置元素的迭代器
iterator end()
返回 set 中最后一个元素后面的迭代器
const_iterator cbegin() const
返回 set 中起始位置元素的 const 迭代器
const_iterator cend() const
返回 set 中最后一个元素后面的 const 迭代器
reverse_iterator rbegin()
返回 set 第一个元素的反向迭代器,即 end
reverse_iterator rend()
返回 set 最后一个元素下一个位置的反向迭代器, begin
const_reverse_iterator crbegin()const
返回 set 第一个元素的反向 const 迭代器,即 cend
const_reverse_iterator crend() const
返回 set 最后一个元素下一个位置的反向 const 代器,即 cbegin

set 的容量
函数声明
功能介绍
bool empty ( ) const
检测 set 是否为空,空返回 true ,否则返回 true
size_type size() const
返回 set 中有效元素的个数

set 修改操作
函数声明
功能介绍
pair<iterator,bool> insert ( const value_type& x )
set 中插入元素 x ,实际插入的是 <x, x> 构成的
键值对,如果插入成功,返回 < 该元素在 set 中的
位置, true>, 如果插入失败,说明 x set 中已经
存在,返回 <x set 中的位置, false>
void erase ( iterator position )
删除 set position 位置上的元素
size_type erase ( const key_type& x )
删除 set 中值为 x 的元素,返回删除的元素的个数
void erase ( iterator first, iterator last )
删除 set [first, last) 区间中的元素
void swap ( set<Key,Compare,Allocator>& st );
交换 set 中的元素
void clear ( )
set 中的元素清空
iterator find ( const key_type& x ) const
返回 set 中值为 x 的元素的位置
size_type count ( const key_type& x ) const
返回 set 中值为 x 的元素的个数
补充:

lower_bound

iterator lower_bound (const value_type& val);
const_iterator lower_bound (const value_type& val) const;

该函数将返回一个指向不小于val的第一个元素的迭代器

upper_bound

 iterator upper_bound (const value_type& val);
const_iterator upper_bound (const value_type& val) const;

该函数将返回一个指向大于val的第一个元素的迭代器

multiset

1. multiset是按照特定顺序存储元素的容器,其中元素是可以重复的。
2. 在multiset中,元素的value也会识别它(因为multiset中本身存储的就是<value, value>组成
的键值对,因此value本身就是key,key就是value,类型为T). multiset元素的值不能在容器
中进行修改(因为元素总是const的),但可以从容器中插入或删除。
3. 在内部,multiset中的元素总是按照其内部比较规则(类型比较)所指示的特定严格弱排序准则
进行排序。
4. multiset容器通过key访问单个元素的速度通常比unordered_multiset容器慢,但当使用迭
代器遍历时会得到一个有序序列。
5. multiset底层结构为二叉搜索树(红黑树)。
注意:
1. multiset中再底层中存储的是 <value, value> 的键值对
2. mtltiset的插入接口中只需要插入即可
3. 与set的区别是,multiset中的元素可以重复,set中value是唯一的
4. 使用迭代器对multiset中的元素进行遍历,可以得到有序的序列
5. multiset 中的 元素不能修改
6. multiset 中找某个元素,时间复杂度为$O(log_2 N)$
7. multiset 的作用:可以对元素进行排序
#include <set>
void TestSet()
{
  int array[] = { 2, 1, 3, 9, 6, 0, 5, 8, 4, 7 };
 
 // 注意:multiset在底层实际存储的是<int, int>的键值对
 multiset<int> s(array, array + sizeof(array)/sizeof(array[0]));
 for (auto& e : s)
 cout << e << " ";
 cout << endl;
 return 0;
}

map

1. map是关联容器,它按照特定的次序(按照key来比较)存储由键值key和值value组合而成的元
素。
2. 在map中,键值key通常用于排序和惟一地标识元素,而值value中存储与此键值key关联的
内容。键值key和值value的类型可能不同,并且在map的内部,key与value通过成员类型
value_type绑定在一起,为其取别名称为pair:
typedef pair<const key, T> value_type;
3. 在内部,map中的元素总是按照键值key进行比较排序的。
4. map中通过键值访问单个元素的速度通常比unordered_map容器慢,但map允许根据顺序
对元素进行直接迭代(即对map中的元素进行迭代时,可以得到一个有序的序列)。
5. map支持下标访问符,即在[]中放入key,就可以找到与key对应的value。
6. map通常被实现为二叉搜索树(更准确的说:平衡二叉搜索树(红黑树))。

map的使用

函数声明
功能介绍
map()
构造一个空的 map
map(const map &x) 拷贝构造

map的迭代器

函数声明
功能介绍
begin() end()
begin: 首元素的位置, end 最后一个元素的下一个位置
cbegin() cend()
begin end 意义相同,但 cbegin cend 所指向的元素不 能修改
rbegin() rend()
反向迭代器, rbegin end 位置, rend begin 位置,其
++ -- 操作与 begin end 操作移动相反
crbegin() crend()
rbegin rend 位置相同,操作相同,但 crbegin crend
指向的元素不能修改

map 的容量与元素访问
函数声明
功能简介
bool empty ( ) const
检测 map 中的元素是否为空,是返回 true ,否则返回 false
size_type size() const
返回 map 中有效元素的个数
mapped_type& operator[ ] (const
key_type& k)
返回 key 对应的 value
问题:当key不在map中时,通过operator获取对应value时会发生什么问题?

注意:在元素访问时,有一个与 operator[] 类似的操作 at()( 该函数不常用 ) 函数,都是通过
key 找到与 key 对应的 value 然后返回其引用,不同的是: key 不存在时, operator[]用默认
value与key构造键值对然后插入,返回该默认value at() 函数直接抛异常
//pair<K,V>
V& operator[](const K& key)
{
	// 不管插入成功还是失败,pair中iterator始终指向key所在节点的iterator
	pair<iterator, bool> ret = insert(make_pair(key, V()));
	iterator it = ret.fisrt;
	return it->second;
}
key存在,插入失败 返回 --> pair<存在的key所在节点的迭代器,false>
key不存在,插入成功 返回 --> pair<新插入key所在节点的迭代器,true>
string arr[] = { "苹果", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜",
"苹果", "香蕉", "苹果", "香蕉","苹果","草莓", "苹果","草莓" };
	map<string, int> countMap;
	for (auto& e : arr)
	{
		countMap[e]++;
		//auto it = countMap.find(e);
		//if (it != countMap.end())
		//{
		//	it->second++;
		//}
		//else
		//{
		//	//const pair<string, int>& val = { e, 1 };
		//	countMap.insert({ e, 1 });
		//}
	}

	for (auto& kv : countMap)
	{
		cout << kv.first << ":" << kv.second << endl;
	}
	cout << endl;

map 中元素的修改
函数声明
功能简介
pair<iterator,bool> insert ( const value_type& x )
map 中插入键值对 x ,注意 x 是一个键值
对,返回值也是键值对: iterator 代表新插入
元素的位置, bool 代表释放插入成功
void erase ( iterator position )
删除 position 位置上的元素
size_type erase ( const key_type& x )
删除键值为 x 的元素
void erase ( iterator first, iterator last )
删除 [first, last) 区间中的元素
void swap ( map<Key,T,Compare,Allocator>& mp )
交换两个 map 中的元素
void clear ( )
map 中的元素清空
iterator find ( const key_type& x )
map 中插入 key x 的元素,找到返回该元
素的位置的迭代器,否则返回 end
const_iterator find ( const key_type& x ) const
map 中插入 key x 的元素,找到返回该元
素的位置的 const 迭代器,否则返回 cend
size_type count ( const key_type& x ) const
返回 key x 的键值在 map 中的个数,注意
map key 是唯一的,因此该函数的返回值
要么为 0 ,要么为 1 ,因此也可以用该函数来
检测一个 key 是否在 map
  map<string, string> dict;
	pair<string, string> kv1("sort", "排序");
	dict.insert(kv1);
	dict.insert(pair<string, string>("left", "左边"));
	dict.insert(make_pair("right", "右边"));
	dict.insert(make_pair("right", "xxxx"));


	// 隐式类型转换
	//pair<string, string> kv2 = { "string", "字符串" };
	dict.insert({ "string", "字符串" });


	//map<string, string>::iterator it = dict.begin();
	auto it = dict.begin();
	while (it != dict.end())
	{
		// iterator key不能修改 value可以修改
		// const_iterator key不能修改 value不能修改
		//it->first += 'x';
		it->second += 'x';

		//cout << (*it).first << ":" << (*it).second << endl;
		cout << it->first << ":" << it->second << endl;
		//cout << it.operator->()->first << ":" << it.operator->()->second << endl;
		++it;
	}
	cout << endl;

	for (auto& kv : dict)
	{
		//auto& [x, y] = kv;
		cout << kv.first << ":" << kv.second << endl;
	}
	cout << endl;

	/*for (auto& [x, y] : dict)
	{
		cout << x << ":" << y << endl;
	}
	cout << endl;*/

	//map<string, string> dict2 = { {"string", "字符串"}, {"left", "左边"},{"right", "右边"} };
	map<string, string> dict2 = { kv1, {"left", "左边"},{"right", "右边"} };
#include <string>
#include <map>
void TestMap()
{
 map<string, string> m;
 // 向map中插入元素的方式:
 // 将键值对<"peach","桃子">插入map中,用pair直接来构造键值对
 m.insert(pair<string, string>("peach", "桃子"));
 // 将键值对<"peach","桃子">插入map中,用make_pair函数来构造键值对
 m.insert(make_pair("banan", "香蕉"));
 
 // 借用operator[]向map中插入元素
    /*
 operator[]的原理是:
  用<key, T()>构造一个键值对,然后调用insert()函数将该键值对插入到map中
  如果key已经存在,插入失败,insert函数返回该key所在位置的迭代器
  如果key不存在,插入成功,insert函数返回新插入元素所在位置的迭代器
  operator[]函数最后将insert返回值键值对中的value返回
 */
    // 将<"apple", "">插入map中,插入成功,返回value的引用,将“苹果”赋值给该引用结果,
 m["apple"] = "苹果";
 // key不存在时抛异常
//m.at("waterme") = "水蜜桃";
 cout << m.size() << endl;
 // 用迭代器去遍历map中的元素,可以得到一个按照key排序的序列
 for (auto& e : m)
 cout << e.first << "--->" << e.second << endl;
 cout << endl;
 // map中的键值对key一定是唯一的,如果key存在将插入失败
 auto ret = m.insert(make_pair("peach", "桃色"));
 if (ret.second)
 cout << "<peach, 桃色>不在map中, 已经插入" << endl;
 else
 cout << "键值为peach的元素已经存在:" << ret.first->first << "--->"
<< ret.first->second <<" 插入失败"<< endl;
 // 删除key为"apple"的元素
 m.erase("apple");
 if (1 == m.count("apple"))
 cout << "apple还在" << endl;
 else
 cout << "apple被吃了" << endl;
}
【总结】
1. map中的的元素是键值对
2. map中的key是唯一的,并且不能修改
3. 默认按照小于的方式对key进行比较
4. map中的元素如果用迭代器去遍历,可以得到一个有序的序列
5. map的底层为平衡搜索树(红黑树),查找效率比较高$O(log_2 N)$
6. 支持[]操作符,operator[]中实际进行插入查找。

multimap

1. Multimaps是关联式容器,它按照特定的顺序,存储由key和value映射成的键值对<key,
value>,其中多个键值对之间的 key是可以重复的
2. 在multimap中,通常按照key排序和惟一地标识元素,而映射的value存储与key关联的内
容。key和value的类型可能不同,通过multimap内部的成员类型value_type组合在一起,
value_type是组合key和value的键值对: typedef pair<const Key, T> value_type;
3. 在内部,multimap中的元素总是通过其内部比较对象,按照指定的特定严格弱排序标准对
key进行排序的。
4. multimap通过key访问单个元素的速度通常比unordered_multimap容器慢,但是使用迭代 器直接遍历multimap中的元素可以得到关于key有序的序列。
5. multimap在底层用二叉搜索树(红黑树)来实现。
注意:multimap和map的唯一不同就是:map中的key是唯一的,而multimap中key是可以
重复的
  •  multimap中的key是可以重复的。
  •  multimap中的元素默认将key按照小于来比较
  •  使用时与map包含的头文件相同

相关例题

两个数组的交集I

给定两个数组  nums1 和  nums2 ,返回  它们的 交集
输出结果中的每个元素一定是  唯一 的。我们可以  不考虑输出结果的顺序 。
class Solution {
public:
    vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
   // 先去重
        set<int> s1(nums1.begin(),nums1.end());       
        set<int> s2(nums2.begin(),nums2.end());
        
        // set排过序,依次比较,小的一定不是交集,相等的是交集
        auto it1 = s1.begin();
        auto it2 = s2.begin();
        vector<int> ret;
        while(it1 != s1.end() && it2 != s2.end())
       {
            if(*it1 < *it2)
           {
                it1++;
           }
            else if(*it2 < *it1)
           {
                it2++;
           }
            else
           {
                ret.push_back(*it1);
                it1++;
                it2++;
           }
       }
        return ret;
   }
};

前K个高频单词

给定一个单词列表 words 和一个整数 k ,返回前 k 个出现次数最多的单词。

返回的答案应该按单词出现频率由高到低排序。如果不同的单词有相同出现频率, 按字典顺序 排序。

底层结构

前面对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个
共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中
插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此
map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。

AVL

二叉搜索树虽可以缩短查找的效率,但 如果数据有序或接近有序二叉搜索树将退化为单支树,查
找元素相当于在顺序表中搜索元素,效率低下 。因此,两位俄罗斯的数学家 G.M.Adelson-Velskii
E.M.Landis 1962 年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右 子树高度之差的绝对值不超过 1( 需要对树中的结点进行调整 ) ,即可降低树的高度,从而减少平均搜索长度。
一棵 AVL 树或者是空树,或者是具有以下性质的二叉搜索树:
  • 它的左右子树都是AVL
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
如果一棵二叉搜索树是高度平衡的,它就是 AVL 树。如果它有 n 个结点,其高度可保持在
$O(log_2 n)$,搜索时间复杂度$O(log_2 n)$
AVL 树节点的定义
template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;  // 该节点的左孩子
	AVLTreeNode<K, V>* _right; // 该节点的右孩子
	AVLTreeNode<K, V>* _parent;// 该节点的父亲
	pair<K, V> _kv;

	int _bf;  // 该节点的平衡因子

	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		,_kv(kv)
		,_bf(0)
	{}
};

AVL树的插入

AVL 树就是在二叉搜索树的基础上引入了平衡因子,因此 AVL 树也可以看成是二叉搜索树。那么
AVL 树的插入过程可以分为两步:
1. 按照二叉搜索树的方式插入新节点 2. 调整节点的平衡因子