深入理解Python多进程:从基础到实战-第三章:进程池与异步编程

Pool类的使用与优化

  • 使用multiprocessing.Pool的主要用法是通过apply()map()starmap()等方法将任务提交给进程池,然后通过Pool
    close()join()方法关闭和等待所有进程完成。例如:
from multiprocessing import Pool


def worker(num):
    # 进程中的工作
    pass


with Pool(processes=4) as pool:
    results = pool.map(worker, range(10))
  • 优化:为了提高效率,可以考虑以下几点:

    • 适当设置进程数:根据机器的核数和任务的特性,设置合适的进程数,避免过多的进程导致上下文切换开销。
    • 避免频繁的进程间通信:尽量减少进程间的通信,例如,如果任务可以并行处理,尽量一次性提交大量任务。

多进程中的异步I/O处理

  • 在多进程环境中,multiprocessing模块本身并不直接支持异步 I/O,因为 I/O 操作通常是阻塞的。然而,可以结合其他库(如asyncio
    concurrent.futures)来实现异步 I/O。例如,concurrent.futures提供了ThreadPoolExecutorProcessPoolExecutor
    ,它们可以配合asynciorun_in_executor()方法实现异步 I/O。
  • 使用concurrent.futures
from concurrent.futures import ThreadPoolExecutor, as_completed


def async_io_task(i):
    # 异步 I/O 操作,如网络请求或文件读写
    pass


with ThreadPoolExecutor() as executor:
    futures = {executor.submit(async_io_task, i) for i in range(10)}
    for future in as_completed(futures):
        result = future.result()
        # 处理结果

这里,ThreadPoolExecutor用于管理线程,as_completed()用于异步等待所有任务完成。这样,尽管 I/O 操作是异步的,但整个进程池的其他任务仍可以并行执行。

concurrent.futures模块的使用

concurrent.futures提供了更简洁的接口,它抽象了底层的线程池或进程池,使得异步编程更加方便。ProcessPoolExecutor
ThreadPoolExecutor是两个主要的类,它们都支持submit()方法提交任务,然后你可以通过as_completed()result()
等方法获取结果。与multiprocessing.Pool相比,concurrent.futures更加面向异步编程,更适合现代 Python 应用。

上一篇:使用STM32CubeMX对STM32F4进行串口配置-1. 配置


下一篇:onion洋葱模型