线程

什么是线程

概念
线程是一个轻量级的进程,为了提高系统的性能引入线程。
线程和进程都参与统一的调度。
在同一个进程中可以创建的多个线程, 共享进程资源。
(Linux里同样用task_struct来描述一个线程)
进程和线程的区别
相同点:都为操作系统提供了并发执行能力
不同点:
调度和资源:线程是系统调度的最小单位,进程是资源分配的最小单位
地址空间方面:同一个进程创建的多个线程共享该进程的资源;进程的地址空间相互独立
通信方面:线程通信相对简单,只需要通过全局变量可以实现,但是需要考虑临界资源访问的问题;进程通信比较复杂,需要借助进程间的通信机制(借助3g-4g内核空间)
安全性方面:线程安全性差一些,当进程结束时会导致所有线程退出;进程相对安全
线程资源
共享的资源:可执行的指令、静态数据、进程中打开的文件描述符、信号处理函数、当前工作目录、用户ID、用户组ID
私有的资源:线程ID (TID)、PC(程序计数器)和相关寄存器、堆栈(局部变量, 返回地址)、错误号 (errno)、信号掩码和优先级、执行状态和属性
练习: 通过父子进程完成对文件的拷贝(cp)

函数接口

创建线程:pthread_create

int pthread_create(pthread_t *thread, const pthread_attr_t *attr, 
                                void *(*start_routine) (void *), void *arg);
功能:创建线程
参数:       thread:线程标识
            attr:线程属性, NULL:代表设置默认属性
            start_routine:函数名:代表线程函数(自己写的)
            arg:用来给前面函数传参
返回值:成功:0
      失败:错误码
      
编译的时候需要加 -pthread 链接动态库

创建线程

#include <stdio.h>
#include <pthread.h>

//线程函数
void *handler_thread(void *arg)
{
    printf("in handler_thread\n");
    while (1)
        ; //让从线程不退出,进程状态l也就是多线程
    return NULL;
}

int main(int argc, char const *argv[])
{
    pthread_t tid;
    if (pthread_create(&tid, NULL, handler_thread, NULL) != 0)
    {
        perror("create thread err");
        return -1;
    }
    printf("in main\n");
    while (1)
        ; //不能让整个进程结束
    return 0;
}

退出线程:pthread_exit

void  pthread_exit(void *value_ptr) 
功能:用于退出线程的执行
参数:value_ptr:线程退出时返回的值

回收线程资源

int  pthread_join(pthread_t thread,  void **value_ptr) 
功能:用于等待一个指定的线程结束,阻塞函数
参数:thread:创建的线程对象,线程ID
     value_ptr:指针*value_ptr指向线程返回的参数, 一般为NULL
返回值:成功 : 0
       失败:errno

int pthread_detach(pthread_t thread);
功能:让线程结束时自动回收线程资源,让线程和主线程分离,非阻塞函数
参数:thread:线程ID
非阻塞式的,例如主线程分离(detach)了线程T2,那么主线程不会阻塞在pthread_detach()pthread_detach()会直接返回,线程T2终止后会被操作系统自动回收资源。
#include <stdio.h>
#include <pthread.h>

//线程函数
void *handler_thread(void *arg)
{
    printf("in handler_thread\n");
    pthread_exit(NULL); //让从线程退出
    while (1)
        ;
    return NULL;
}

int main(int argc, char const *argv[])
{
    pthread_t tid;
    if (pthread_create(&tid, NULL, handler_thread, NULL) != 0)
    {
        perror("create thread err");
        return -1;
    }
    printf("in main\n");

    //回收指定线程资源
    //pthread_join(tid,NULL);
    pthread_detach(tid);

    while (1)
        ; //不能让整个进程结束

    return 0;
}

同步

概念
同步(synchronization)指的是多个任务(线程)按照约定的顺序相互配合完成一件事情
(异步:异步则反之,并非一定需要一件事做完再做另一件事。)
同步机制
通过信号量实现线程间同步。
信号量:通过信号量实现同步操作;由信号量来决定线程是继续运行还是阻塞等待.
信号量代表某一类资源,其值表示系统中该资源的数量:
信号量的值>0,表示有资源可以用, 可以申请到资源,
信号量的值<=0, 表示没有资源可以通用, 无法申请到资源, 阻塞.
信号量还是一个受保护的变量,只能通过三种操作来访问:初始化、P操作(申请资源)、V操作(释放资源)

sem_init: 信号量初始化
sem_wait: 申请资源,P操作, 如果没有资源可以用, 阻塞,-1
sem_post: 释放资源,V操作, 非阻塞 +1

函数接口

int  sem_init(sem_t *sem,  int pshared,  unsigned int value)  
功能:初始化信号量   
参数:sem:初始化的信号量对象
    pshared:信号量共享的范围(0: 线程间使用   非0:1进程间使用)
    value:信号量初值
返回值:成功 0
       失败 -1

int  sem_wait(sem_t *sem)  
功能:申请资源  P操作 
参数:sem:信号量对象
返回值:成功 0
       失败 -1
注:此函数执行过程,当信号量的值大于0时,表示有资源可以用,则继续执行,同时对信号量减1;当信号量的值等于0时,表示没有资源可以使用,函数阻塞
       
int  sem_post(sem_t *sem)   
功能:释放资源  V操作      
参数:sem:信号量对象
返回值:成功 0
      失败 -1
注:释放一次信号量的值加1,函数不阻塞
#include <semaphore.h>
#include <stdio.h>
#include <pthread.h>
#include <string.h>

sem_t sem;
char buf[32];

void *handler_thread(void *arg)
{
    while (1)
    {
        //申请资源
        sem_wait(&sem);
        if (strcmp(buf, "quit") == 0)
            break;
        printf("%s\n", buf);
    }
}

int main(int argc, char const *argv[])
{
    pthread_t tid;
    if (pthread_create(&tid, NULL, handler_thread, NULL) != 0)
    {
        perror("pthread create err");
        return -1;
    }

    //初始化信号量
    if (sem_init(&sem, 0, 0) != 0)
    {
        perror("sem init err");
        return -1;
    }

    while (1)
    {
        
        scanf("%s", buf);
        //释放资源
        sem_post(&sem);
        if (strcmp(buf, "quit") == 0)
            break;
    }

    pthread_join(tid, NULL);
    return 0;
}

互斥

概念
互斥:多个线程在访问临界资源时,同一时间只能一个线程访问
临界资源:一次仅允许一个线所使用的资源
临界区:指的是一个访问共享资源的程序片段
互斥锁:通过互斥锁可以实现互斥机制,主要用来保护临界资源,每个临界资源都由一个互斥锁来保护,线程必须先获得互斥锁才能访问临界资源,访问完资源后释放该锁。如果无法获得锁,线程会阻塞直到获得锁为止。

pthread_mutex_init
pthread_mutex_lock
pthread_mutex_unlock

函数接口

int  pthread_mutex_init(pthread_mutex_t  *mutex, pthread_mutexattr_t *attr)  
功能:初始化互斥锁  
参数:mutex:互斥锁
    attr:  互斥锁属性  //  NULL表示缺省属性
返回值:成功 0
      失败 -1

int  pthread_mutex_lock(pthread_mutex_t *mutex)   
功能:申请互斥锁     
参数:mutex:互斥锁
返回值:成功 0
      失败 -1
注:和pthread_mutex_trylock区别:pthread_mutex_lock是阻塞的;pthread_mutex_trylock不阻塞,如果申请不到锁会立刻返回

int  pthread_mutex_unlock(pthread_mutex_t *mutex)   
功能:释放互斥锁     
参数:mutex:互斥锁
返回值:成功 0
      失败 -1

int  pthread_mutex_destroy(pthread_mutex_t  *mutex)  
功能:销毁互斥锁     
参数:mutex:互斥锁
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

int a[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
pthread_mutex_t lock;

void *handler_print(void *arg)
{
    while (1)
    {
        pthread_mutex_lock(&lock);
        for (int i = 0; i < 10; i++)
            printf("%d ", a[i]);
        printf("\n");
        pthread_mutex_unlock(&lock);
        sleep(1);
    }
    return NULL;
}

void *handler_swap(void *arg)
{
    int t;
    while (1)
    {
        pthread_mutex_lock(&lock);
        for (int i = 0; i < 5; i++)
        {
            t = a[i];
            a[i] = a[9 - i];
            a[9 - i] = t;
        }
        pthread_mutex_unlock(&lock);
    }
    return NULL;
}

int main(int argc, char const *argv[])
{
    pthread_t tid1;
    if (pthread_create(&tid1, NULL, handler_print, NULL) != 0)
    {
        perror("pthread print create err");
        return -1;
    }

    pthread_t tid2;
    if (pthread_create(&tid2, NULL, handler_swap, NULL) != 0)
    {
        perror("pthread swap create err");
        return -1;
    }

    //初始化互斥锁
    if (pthread_mutex_init(&lock, NULL) != 0)
    {
        perror("init err");
        return -1;
    }

    pthread_join(tid1, NULL);
    pthread_join(tid2, NULL);

    pthread_mutex_destroy(&lock);
    return 0;
}

死锁
是指两个或两个以上的进程或线程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。
死锁产生的四个必要条件
1、互斥使用,即当资源被一个线程使用(占有)时,别的线程不能使用
2、不可抢占,资源请求者不能强制从资源占有者手中夺取资源,资源只能由资源占有者主动释放。
3、请求和保持,即当资源请求者在请求其他的资源的同时保持对原有资源的占有。
4、循环等待,即存在一个等待队列:P1占有P2的资源,P2占有P3的资源,P3占有P1的资源。这样就形成了一个等待环路。

注意:当上述四个条件都成立的时候,便形成死锁。当然,死锁的情况下如果打破上述任何一个条件,便可让死锁消失。

条件变量

条件变量用于在线程之间传递信号,以便某些线程可以等待某些条件发生。当某些条件发生时,条件变量会发出信号,使等待该条件的线程可以恢复执行。

一般和互斥锁搭配使用,实现同步机制:
pthread_cond_init(&cond,NULL); //初始化条件变量

使用前需要上锁:
pthread_mutex_lock(&lock); //上锁
判断条件
pthread_cond_wait(&cond, &lock); //阻塞等待条件产生,没有条件产生时阻塞,同时解锁,当条件产生时结束阻塞,再次上锁

pthread_cond_signal(&cond); //产生条件,不阻塞

pthread_cond_destroy(&cond); //销毁条件变量

注意: 必须保证让pthread_cond_wait先执行,pthread_cond_signal再产生条件

上一篇:UE4内存优化-内存查看命令​


下一篇:Github 2024-04-21php开源项目日报Top10