一、UDP编程
UDP编程的应用和TCP编程的应用同样非常广泛,如果说真得想使用UDP编程,一般情况下还真得不至于运用DPDK这种重量级的框架。但一个框架的优秀与否,不仅仅在于自身的整体设计优秀,更重要的在于其对应用的支持更完善。
正如DPDK对TCP的支持一样,其实对于DPDK这种更侧重于底层的应用来说,实现UDP和TCP没有本质的区别,只是套的一层解析的协议不同罢了。同样,UDP与TCP的不同及其协议的内容如有不明白可自行查看相关资料,此处不再赘述。
二、DPDK实现UDP源码分析
下面看一下例程(代码来源与TCP相同):
1、数据结构和协议
// arp表的单个条目
struct arp_entry
{
uint32_t ip;
unsigned char hwaddr[RTE_ETHER_ADDR_LEN];
unsigned char type;
struct arp_entry *next;
struct arp_entry *prev;
};
// arp表结构
struct arp_table
{
struct arp_entry *entries;
int count;
pthread_spinlock_t spinlock;
};
// udp control block
struct localhost
{
int fd;
//unsigned int status; //
uint32_t localip; // ip --> mac
unsigned char localmac[RTE_ETHER_ADDR_LEN];
uint16_t localport;
unsigned char protocol;
struct rte_ring *sndbuf;
struct rte_ring *rcvbuf;
struct localhost *prev;
struct localhost *next;
pthread_cond_t cond;
pthread_mutex_t mutex;
};
//UDP的数据包
struct offload
{
uint32_t sip;
uint32_t dip;
uint16_t sport;
uint16_t dport;
int protocol;
unsigned char *data;
uint16_t length;
};
//common.c
int ng_arp_entry_insert(uint32_t ip, unsigned char *mac)
{
struct arp_table *pstTbl = arp_table_instance();
struct arp_entry *pstEntry = NULL;
unsigned char *pstHwaddr = NULL;
pstHwaddr = ng_get_dst_macaddr(ip);
if(pstHwaddr == NULL)
{
pstEntry = rte_malloc("arp_entry", sizeof(struct arp_entry), 0);
if (pstEntry)
{
memset(pstEntry, 0, sizeof(struct arp_entry));
pstEntry->ip = ip;
rte_memcpy(pstEntry->hwaddr, mac, RTE_ETHER_ADDR_LEN);
pstEntry->type = 0;
pthread_spin_lock(&pstTbl->spinlock);
LL_ADD(pstEntry, pstTbl->entries);
pstTbl->count ++;
pthread_spin_unlock(&pstTbl->spinlock);
}
return 1;
}
return 0;
}
static struct arp_table *arp_table_instance(void)
{
if (g_pstArpTbl == NULL)
{
g_pstArpTbl = rte_malloc("arp table", sizeof(struct arp_table), 0);
if (g_pstArpTbl == NULL)
rte_exit(EXIT_FAILURE, "rte_malloc arp table failed\n");
memset(g_pstArpTbl, 0, sizeof(struct arp_table));
pthread_spin_init(&g_pstArpTbl->spinlock, PTHREAD_PROCESS_SHARED);
}
return g_pstArpTbl;
}
unsigned char* ng_get_dst_macaddr(uint32_t dip)
{
struct arp_entry *pstIter;
struct arp_table *pstTbl = arp_table_instance();
int count = pstTbl->count;
for (pstIter = pstTbl->entries; count-- != 0 && pstIter != NULL; pstIter = pstIter->next)
{
if (dip == pstIter->ip)
return pstIter->hwaddr;
}
return NULL;
}
UDP数据处理分为两类一类是控制包,一类是负载包也就是数据包。arp表的作用类似于快递小哥的作用,查找IP与MAC的映射并实现数据包的准确传输,即其有两个出口,一个是数据发送时的出口,保存发送时的IP和MAC(没有则先广播);一个是接收时的出口,用来保存收到的数据包对应的IP和MAC。代码没有什么难度,大家对照着相关的协议实现就明白了。
int nsocket(__attribute__((unused)) int domain, int type, __attribute__((unused)) int protocol)
{
int iFd;
struct localhost *pstHost;
pthread_cond_t pctCond = PTHREAD_COND_INITIALIZER;
pthread_mutex_t pmtMutex = PTHREAD_MUTEX_INITIALIZER;
iFd = get_fd_frombitmap();
if(type == SOCK_DGRAM) // udp
{
pstHost = rte_malloc("localhost", sizeof(struct localhost), 0);
if(pstHost == NULL)
{
printf("[%s][%d]: rte_malloc fail!\n", __FUNCTION__, __LINE__);
return -1;
}
memset(pstHost, 0x00, sizeof(struct localhost));
pstHost->fd = iFd;
pstHost->protocol = IPPROTO_UDP;
pstHost->rcvbuf = rte_ring_create("recv buffer", D_RING_SIZE, rte_socket_id(), RING_F_SP_ENQ | RING_F_SC_DEQ);
if (pstHost->rcvbuf == NULL)
{
printf("[%s][%d]: rte_ring_create fail!\n", __FUNCTION__, __LINE__);
rte_free(pstHost);
return -1;
}
pstHost->sndbuf = rte_ring_create("send buffer", D_RING_SIZE, rte_socket_id(), RING_F_SP_ENQ | RING_F_SC_DEQ);
if (pstHost->sndbuf == NULL)
{
printf("[%s][%d]: rte_ring_create fail!\n", __FUNCTION__, __LINE__);
rte_ring_free(pstHost->rcvbuf);
rte_free(pstHost);
return -1;
}
rte_memcpy(&pstHost->cond, &pctCond, sizeof(pthread_cond_t));
rte_memcpy(&pstHost->mutex, &pmtMutex, sizeof(pthread_mutex_t));
LL_ADD(pstHost, g_pstHost);
}
else if(type == SOCK_STREAM) // tcp
{
struct tcp_stream *pstStream = rte_malloc("tcp_stream", sizeof(struct tcp_stream), 0);
if (pstStream == NULL)
return -1;
memset(pstStream, 0, sizeof(struct tcp_stream));
pstStream->fd = iFd;
pstStream->protocol = IPPROTO_TCP;
pstStream->next = pstStream->prev = NULL;
pstStream->rcvbuf = rte_ring_create("tcp recv buffer", D_RING_SIZE, rte_socket_id(), RING_F_SP_ENQ | RING_F_SC_DEQ);
if (pstStream->rcvbuf == NULL)
{
rte_free(pstStream);
return -1;
}
pstStream->sndbuf = rte_ring_create("tcp send buffer", D_RING_SIZE, rte_socket_id(), RING_F_SP_ENQ | RING_F_SC_DEQ);
if (pstStream->sndbuf == NULL)
{
rte_ring_free(pstStream->rcvbuf);
rte_free(pstStream);
return -1;
}
pthread_cond_t blank_cond = PTHREAD_COND_INITIALIZER;
rte_memcpy(&pstStream->cond, &blank_cond, sizeof(pthread_cond_t));
pthread_mutex_t blank_mutex = PTHREAD_MUTEX_INITIALIZER;
rte_memcpy(&pstStream->mutex, &blank_mutex, sizeof(pthread_mutex_t));
g_pstTcpTbl = tcpInstance();
LL_ADD(pstStream, g_pstTcpTbl->tcb_set); // todo :hash
}
return iFd;
}
int nbind(int sockfd, const struct sockaddr *addr, __attribute__((unused)) socklen_t addrlen)
{
void *info = NULL;
info = get_hostinfo_fromfd(sockfd);
if(info == NULL)
return -1;
struct localhost *pstHostInfo = (struct localhost *)info;
if(pstHostInfo->protocol == IPPROTO_UDP)
{
const struct sockaddr_in *pstAddr = (const struct sockaddr_in *)addr;
pstHostInfo->localport = pstAddr->sin_port;
rte_memcpy(&pstHostInfo->localip, &pstAddr->sin_addr.s_addr, sizeof(uint32_t));
rte_memcpy(pstHostInfo->localmac, &g_stCpuMac, RTE_ETHER_ADDR_LEN);
}
else if(pstHostInfo->protocol == IPPROTO_TCP)
{
struct tcp_stream* pstStream = (struct tcp_stream*)pstHostInfo;
const struct sockaddr_in *pstAddr = (const struct sockaddr_in *)addr;
pstStream->dport = pstAddr->sin_port;
rte_memcpy(&pstStream->dip, &pstAddr->sin_addr.s_addr, sizeof(uint32_t));
rte_memcpy(pstStream->localmac, &g_stCpuMac, RTE_ETHER_ADDR_LEN);
pstStream->status = TCP_STATUS_CLOSED;
}
return 0;
}
ssize_t nrecvfrom(int sockfd, void *buf, size_t len, __attribute__((unused)) int flags,
struct sockaddr *src_addr, __attribute__((unused)) socklen_t *addrlen)
{
struct localhost *pstHostInfo = NULL;
struct offload *pstOffLoad = NULL;
struct sockaddr_in *pstAddr = NULL;
unsigned char *pucPtr = NULL;
int iLen = 0;
int iRet = -1;
pstHostInfo = (struct localhost *)get_hostinfo_fromfd(sockfd);
if(pstHostInfo == NULL)
return -1;
pthread_mutex_lock(&pstHostInfo->mutex);
while((iRet = rte_ring_mc_dequeue(pstHostInfo->rcvbuf, (void**)&pstOffLoad)) < 0)
{
pthread_cond_wait(&pstHostInfo->cond, &pstHostInfo->mutex);
}
pthread_mutex_unlock(&pstHostInfo->mutex);
pstAddr = (struct sockaddr_in *)src_addr;
pstAddr->sin_port = pstOffLoad->sport;
rte_memcpy(&pstAddr->sin_addr.s_addr, &pstOffLoad->sip, sizeof(uint32_t));
if(len < pstOffLoad->length)
{
rte_memcpy(buf, pstOffLoad->data, len);
pucPtr = rte_malloc("unsigned char *", pstOffLoad->length - len, 0);
rte_memcpy(pucPtr, pstOffLoad->data + len, pstOffLoad->length - len);
pstOffLoad->length -= len;
rte_free(pstOffLoad->data);
pstOffLoad->data = pucPtr;
rte_ring_mp_enqueue(pstHostInfo->rcvbuf, pstOffLoad);
return len;
}
iLen = pstOffLoad->length;
rte_memcpy(buf, pstOffLoad->data, pstOffLoad->length);
rte_free(pstOffLoad->data);
rte_free(pstOffLoad);
return iLen;
}
ssize_t nsendto(int sockfd, const void *buf, size_t len, __attribute__((unused)) int flags,
const struct sockaddr *dest_addr, __attribute__((unused)) socklen_t addrlen)
{
struct localhost *pstHostInfo = NULL;
struct offload *pstOffLoad = NULL;
const struct sockaddr_in *pstAddr = (const struct sockaddr_in *)dest_addr;
pstHostInfo = (struct localhost *)get_hostinfo_fromfd(sockfd);
if(pstHostInfo == NULL)
return -1;
pstOffLoad = rte_malloc("offload", sizeof(struct offload), 0);
if (pstOffLoad == NULL)
return -1;
pstOffLoad->dip = pstAddr->sin_addr.s_addr;
pstOffLoad->dport = pstAddr->sin_port;
pstOffLoad->sip = pstHostInfo->localip;
pstOffLoad->sport = pstHostInfo->localport;
pstOffLoad->length = len;
struct in_addr addr;
addr.s_addr = pstOffLoad->dip;
printf("nsendto ---> src: %s:%d \n", inet_ntoa(addr), ntohs(pstOffLoad->dport));
pstOffLoad->data = rte_malloc("unsigned char *", len, 0);
if (pstOffLoad->data == NULL) {
rte_free(pstOffLoad);
return -1;
}
rte_memcpy(pstOffLoad->data, buf, len);
puts("rte_ring_mp_enqueue before !");
rte_ring_mp_enqueue(pstHostInfo->sndbuf, pstOffLoad);
puts("rte_ring_mp_enqueue after !");
return len;
}
int nclose(int fd)
{
void *info = NULL;
info = (struct localhost *)get_hostinfo_fromfd(fd);
if(info == NULL)
return -1;
struct localhost *pstHostInfo = (struct localhost *)info;
if(pstHostInfo->protocol == IPPROTO_UDP)
{
LL_REMOVE(pstHostInfo, g_pstHost);
if (pstHostInfo->rcvbuf)
rte_ring_free(pstHostInfo->rcvbuf);
if (pstHostInfo->sndbuf)
rte_ring_free(pstHostInfo->sndbuf);
rte_free(pstHostInfo);
set_fd_frombitmap(fd);
}
else if(pstHostInfo->protocol == IPPROTO_TCP)
{
struct tcp_stream *pstStream = (struct tcp_stream*)info;
if (pstStream->status != TCP_STATUS_LISTEN)
{
struct tcp_fragment *pstFragment = rte_malloc("tcp_fragment", sizeof(struct tcp_fragment), 0);
if (pstFragment == NULL)
return -1;
memset(pstFragment, 0x00, sizeof(struct tcp_fragment));
pstFragment->data = NULL;
pstFragment->length = 0;
pstFragment->sport = pstStream->dport;
pstF