1.前序遍历 根左右
使用栈,因为栈是后入先出,所以使用栈来记录结点,先押入跟结点,在押入右结点和左节点,按照出栈顺序访问元素
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null)
return result;
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while (!stack.isEmpty()){
TreeNode temp = stack.pop();
//left后入栈会先出栈,因为是根左右
result.add(temp.val);
if (temp.right != null)
stack.push(temp.right);
if (temp.left != null)
stack.push(temp.left);
}
return result;
}
}
2.后序遍历 左右根
与前序遍历基本一致
- 后序遍历顺序 左-右-中
- 入栈顺序:中-左-右
- 出栈顺序:中-右-左
- 最后翻转结果(一定要记得翻转结果,否则得到的是根右左)
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null)
return result;
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while (!stack.isEmpty()){
TreeNode temp = stack.pop();
result.add(temp.val);
if (temp.left != null){
stack.push(temp.left);
}
if (temp.right != null){
stack.push(temp.right);
}
}
Collections.reverse(result);
return result;
}
}
3. 中序遍历 左根右
单独的思路,因为不能先将根压入栈,那么如果先将left入栈会导致指针的丢失,所以要先找到左子树为空的,也就是下一个元素就是当前的栈顶,即当前子树的根结点
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null)
return result;
TreeNode cur = root;
Stack<TreeNode> stack = new Stack<>();
while (!stack.isEmpty() || cur != null){
if (cur != null){//此时要找到左子树的底部
stack.push(cur);
cur = cur.left;
}else {//当前结点没有了左子树,那么当前没有左子树的跟结点就是栈顶
cur = stack.pop();
result.add(cur.val);
cur = cur.right;
}
}
return result;
}
}