进阶NLP技术:
- 学习更复杂的文本表示方法,如词嵌入(Word2Vec, GloVe, FastText等)以及预训练词向量模型。
from gensim.models import Word2Vec
sentences = [['hello', 'world'], ['this', 'is', 'an', 'example']]
model = Word2Vec(sentences, min_count=1, size=100)
# 获取词向量
word_vector = model.wv['hello']
print(word_vector)
# 类比推理
print(model.wv.most_similar(positive=['man', 'woman'], negative=['king'], topn=1))
- 探索深度学习在NLP中的应用,熟悉常用的深度学习框架(如TensorFlow, PyTorch)并实现简单的深度学习模型,如循环神经网络(RNNs)、长短时记忆网络(LSTMs)、门控循环单元(GRUs)等。
import torch
from torch import nn
class LSTMModel(nn.Module):
def __init__(self, input_dim, embedding_dim, hidden_dim, output_dim):
super().__init__()
self.embedding = nn.Embedding(input_dim, embedding_dim)
self.rnn = nn.LSTM(embedding_dim, hidden_dim)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, text):
embedded = self.embedding(text)
outputs, (hidden, cell) = self.rnn(embedded)
prediction = self.fc(hidden.squeeze(0))
return prediction
# 初始化模型、损失函数、优化器
model = LSTMModel(input_dim=vocab_size, embedding_dim=embedding_dim, hidden_dim=hidden_dim, output_dim=output_dim)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
# 假设已有训练数据
inputs = torch.tensor(data["input"]).long()
targets = torch.tensor(data["target"]).long()
# 进行单个训练步骤
output = model(inputs)
loss = criterion(output, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
- 实践序列标注任务(如CRF模型)、注意力机制、Transformer架构(BERT、GPT系列)等先进模型。
# 探索Hugging Face Transformers库中的预训练模型BERT
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# 加载预训练BERT模型和分词器
model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# 对文本进行编码并获取模型输出
text = ["This is an NLP task."]
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# 对于二分类问题,获取预测类别
predicted_class = torch.argmax(logits[0]).item()