爬虫(小案例)

点开其中一个链接, http://desk.zol.com.cn/dongman/huoyingrenzhe/(前面为浏览器自动补全,在代码里需要自己补全)

可以看到图片的下载地址以及打开本图集下一张图片的链接

了解完网站的图片构造后动手写代码,我们筛选出图集的链接后,通过图集的链接找到第一张图片下载地址和第二张图片的链接,通过第二张的链接找到第二张的下载地址和第三张的链接,循环下去,直到本图集到底,接着开始第二个图集,直到所有图集下载完毕,代码如下,为了方便循环,我们集成下载图片功能为download函数,解析图片网址功能为parses_picture:

from bs4 import BeautifulSoup
import requests


def download(img_url, headers, n):
    req = requests.get(img_url, headers=headers)
    name = '%s' % n + '=' + img_url[-15:]
    path = r'C:\Users\asus\Desktop\火影壁纸1'
    file_name = path + '\\' + name
    f = open(file_name, 'wb')
    f.write(req.content)
    f.close


def parses_picture(url, headers, n):
    url = r'http://desk.zol.com.cn/' + url
    img_req = requests.get(url, headers=headers)
    img_req.encoding = 'gb2312'
    html = img_req.text
    bf = BeautifulSoup(html, 'lxml')
    try:
        img_url = bf.find('div', class_='photo').find('img').get('src')
        download(img_url, headers, n)
        url1 = bf.find('div', id='photo-next').a.get('href')
        parses_picture(url1, headers, n)
    except:
        print(u'第%s图片集到头了' % n)


if __name__ == '__main__':
    url = 'http://desk.zol.com.cn/dongman/huoyingrenzhe/'
    headers = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36"}
    req = requests.get(url=url, headers=headers)
    req = requests.get(url=url, headers=headers)
    req.encoding = 'gb2312'
    html = req.text
    bf = BeautifulSoup(html, 'lxml')
    targets_url = bf.find_all('li', class_='photo-list-padding')
    n = 1
    for each in targets_url:
        url = each.a.get('href')
        parses_picture(url, headers, n)
        n = n + 1

 如果要抓取百度上面搜索关键词为Jecvay Notes的网页, 则代码如下

import urllib
import urllib.request
 
data={}
data['word']='Jecvay Notes'
 
url_values=urllib.parse.urlencode(data)
url="http://www.baidu.com/s?"
full_url=url+url_values
 
data=urllib.request.urlopen(full_url).read()
data=data.decode('UTF-8')
print(data)

上一篇:农业现代化:UWB模块为农业领域带来的效益和便利


下一篇:贪心算法|738.单调递增的数字