(Java)数据结构——图(第四节)Prim的实现最小生成树(MST)

前言

本博客是博主用于复习数据结构以及算法的博客,如果疏忽出现错误,还望各位指正。

Prim算法(Pirm的实现原理)

Prim的实现原理较为简单:

从当前的集合里,选取“集合”权重最小的邻接结点,加入集合,构成新的集合,继续从头操作,直到选取了N-1条边or结点数达到N

我们这里的例子以C为开始,生成树如图

Prim算法(Pirm的实现代码)

prim主要实现方法

public  void prim(int begin){
        //Prim原理:从当前集合选出权重最小的邻接结点加入集合,构成新的集合,重复步骤,直到N-1条边
        int N = vertexList.size();
        //当前的集合 与其他邻接结点的最小值
        int[] lowcost = edges[begin];
        //记录该结点是从哪个邻接结点过来的
        int[] adjvex = new int[N];
        Arrays.fill(adjvex,begin);
        //表示已经遍历过了,isVisited置true
        isVisited[begin] = true;
    
        for(int i =0;i<N-1;i++){//进行N-1次即可,因为只需要联通N-1条边
            //寻找当前集合最小权重邻接结点的操作
            int index = 0;
            int mincost = Integer.MAX_VALUE;
            for(int j = 0;j<N;j++){
                if(isVisited[j]) continue;
                if(lowcost[j] < mincost){//寻找当前松弛点
                    mincost = lowcost[j];
                    index = j;
                }
            }
            System.out.println("选择节点"+index+"权重为:"+mincost);
            isVisited[index] = true;
            System.out.println(index);
            //加入集合后更新的操作,看最小邻接结点是否更改
            for(int k = 0;k<N;k++){
                if(isVisited[k]) continue;//如果遍历过就跳过
                if(edges[index][k] < lowcost[k]){ //加入新的节点之后更新,检查原图的index节点,加入后,是否有更新的
                    lowcost[k] = (edges[index][k]);
                    adjvex[k] = index;
                }
            }
        }
    }

如果要求最小生成树的总权重的话,把lowcost求和就行

接下来是完整代码

注意:isVisited使用前的清空

//package GraphTest.Demo;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;

public class Graph{//这是一个图类
    /***基础属性***/
    int[][] edges;    //邻接矩阵存储边
    ArrayList<EData> to = new ArrayList<>();    //EData包含start,end,weight三个属性,相当于另一种存储方式,主要是为了实现kruskal算法定义的
    ArrayList<String> vertexList = new ArrayList<>();    //存储结点名称,当然你若想用Integer也可以,这个是我自己复习用的
    int numOfEdges;    //边的个数
    boolean[] isVisited;
    //构造器
    Graph(int n){
        this.edges = new int[n][n];
        //为了方便,决定讲结点初始化为INF,这也方便后续某些操作
        int INF = Integer.MAX_VALUE;
        for(int i=0;i<n;i++){
            Arrays.fill(edges[i],INF);
        }
        this.numOfEdges = 0;
        this.isVisited = new boolean[n];
    }
    //插入点
    public void insertVertex(String vertex){//看自己个人喜好,我这边是一个一个在主方法里插入点的名称
        vertexList.add(vertex);
    }
    //点的个数
    public int getNumOfVertex(){
        return vertexList.size();
    }
    //获取第i个节点的名称
    public String getVertexByIndex(int i){
        return vertexList.get(i);
    }
    //获取该节点的下标
    public int getIndexOfVertex(String vertex){
        return vertexList.indexOf(vertex);
    }
    //插入边
    public void insertEdge(int v1,int v2,int weight){
        //注意,这里是无向图
        edges[v1][v2] = weight;
        edges[v2][v1] = weight;
        this.numOfEdges++;
        //如果要用Kruskal算法的话这里+
        to.add(new EData(v1,v2,weight));    //加入from to这种存储方式
    }
    //边的个数
    public int getNumOfEdge(){
        return this.numOfEdges;
    }
    //得到点到点的权值
    public int getWeight(int v1,int v2){//获取v1和v2边的权重
        return edges[v1][v2];
    }
    //打印图
    public void showGraph(){
        for(int[] line:edges){
            System.out.println(Arrays.toString(line));
        }
    }
    //获取index行 第一个邻接结点
    public int getFirstNeighbor(int index){
        for(int i = 0;i < vertexList.size();i++){
            if(edges[index][i] != Integer.MAX_VALUE){
                return i;    //找到就返回邻接结点的坐标
            }
        }
        return -1;    //没找到的话,返回-1
    }
    //获取row行 column列之后的第一个邻接结点
    public int getNextNeighbor(int row,int column){
        for(int i = column + 1;i < vertexList.size();i++){
            if(edges[row][i] != Integer.MAX_VALUE){
                return i;    //找到就返回邻接结点的坐标
            }
        }
        return -1;    //没找到的话,返回-1
    }
    //DFS实现,先定义一个isVisited布尔数组确认该点是否遍历过

    public void DFS(int index,boolean[] isVisited){
        System.out.print(getVertexByIndex(index)+" ");    //打印当前结点
        isVisited[index] = true;
        //查找index的第一个邻接结点f
        int f = getFirstNeighbor(index);
        //
        while(f != -1){//说明有
            if(!isVisited[f]){//f没被访问过
                DFS(f,isVisited);    //就进入该节点f进行遍历
            }
            //如果f已经被访问过,从当前 i 行的 f列 处往后找
            f = getNextNeighbor(index,f);
        }
    }
    //考虑到连通分量,需要对所有结点进行一次遍历,因为有Visited,所以不用考虑冲突情况
    public void DFS(){
        for(int i=0;i<vertexList.size();i++){
            if(!isVisited[i]){
                DFS(i,isVisited);
            }
        }
    }

    public void BFS(int index,boolean[] isVisited){
        //BFS是由队列实现的,所以我们先创建一个队列
        LinkedList<Integer> queue = new LinkedList<>();
        System.out.print(getVertexByIndex(index)+" ");    //打印当前结点
        isVisited[index] =true;    //遍历标志ture
        queue.addLast(index);    //队尾加入元素
        int cur,neighbor;    //队列头节点cur和邻接结点neighbor
        while(!queue.isEmpty()){//如果队列不为空的话,就一直进行下去
            //取出队列头结点下标
            cur = queue.removeFirst();    //可以用作出队
            //得到第一个邻接结点的下标
            neighbor = getFirstNeighbor(cur);
            //之后遍历下一个
            while(neighbor != -1){//邻接结点存在
                //是否访问过
                if(!isVisited[neighbor]){
                    System.out.print(getVertexByIndex(neighbor)+" ");
                    isVisited[neighbor] = true;
                    queue.addLast(neighbor);
                }
                //在cur行找neighbor列之后的下一个邻接结点
                neighbor = getNextNeighbor(cur,neighbor);
            }
        }
    }
    //考虑到连通分量,需要对所有结点进行一次遍历,因为有Visited,所以不用考虑冲突情况
    public void BFS(){
        for(int i=0;i<vertexList.size();i++){
            if(!isVisited[i]){
                BFS(i,isVisited);
            }
        }
    }
    
    public  void prim(int begin){
        //Prim原理:从当前集合选出权重最小的邻接结点加入集合,构成新的集合,重复步骤,直到N-1条边
        int N = vertexList.size();
        //当前的集合 与其他邻接结点的最小值
        int[] lowcost = edges[begin];
        //记录该结点是从哪个邻接结点过来的
        int[] adjvex = new int[N];
        Arrays.fill(adjvex,begin);
        //表示已经遍历过了,isVisited置true
        isVisited[begin] = true;
    
        for(int i =0;i<N-1;i++){//进行N-1次即可,因为只需要联通N-1条边
            //寻找当前集合最小权重邻接结点的操作
            int index = 0;
            int mincost = Integer.MAX_VALUE;
            for(int j = 0;j<N;j++){
                if(isVisited[j]) continue;
                if(lowcost[j] < mincost){//寻找当前松弛点
                    mincost = lowcost[j];
                    index = j;
                }
            }
            System.out.println("选择节点"+index+"权重为:"+mincost);
            isVisited[index] = true;
            System.out.println(index);
            //加入集合后更新的操作,看最小邻接结点是否更改
            for(int k = 0;k<N;k++){
                if(isVisited[k]) continue;//如果遍历过就跳过
                if(edges[index][k] < lowcost[k]){ //加入新的节点之后更新,检查原图的index节点,加入后,是否有更新的
                    lowcost[k] = (edges[index][k]);
                    adjvex[k] = index;
                }
            }
        }
    }

    public static void main(String[] args) {
        int n = 5;
        String[] Vertexs ={"A","B","C","D","E"};
        //创建图对象
        Graph graph = new Graph(n);
        for(String value:Vertexs){
            graph.insertVertex(value);
        }
        graph.insertEdge(0,1,7);
        graph.insertEdge(0,2,1);
        graph.insertEdge(1,2,6);
        graph.insertEdge(1,3,3);
        graph.insertEdge(1,4,5);
        graph.insertEdge(3,4,8);
        graph.showGraph();
//        for(EData i : graph.to){
//            System.out.println(i.toString());
//        }
        graph.DFS(1, graph.isVisited);
        System.out.println();
        graph.DFS();//再求求所有的,看有没有剩下的
        System.out.println();
        Arrays.fill(graph.isVisited,false);
        graph.BFS(1, graph.isVisited);
        System.out.println();
        Arrays.fill(graph.isVisited,false);
        graph.BFS();
        System.out.println();
        Arrays.fill(graph.isVisited,false);
        graph.prim(2);
    }
}

class EData{
    //当然,这是为了方便,直接记录结点下标,而不记录像"A"这种
    int start;
    int end;
    int weight;
    EData(int start,int end,int weight){
        this.start = start;
        this.end = end;
        this.weight = weight;
    }

    @Override
    public String toString() {
        return "EData{" +
                "start=" + start +
                ", end=" + end +
                ", weight=" + weight +
                '}';
    }
}

上一篇:如何处理ubuntu22.04LTS安装过程中出现“Daemons using outdated libraries”提示


下一篇:电脑硬盘分区表的两种格式:MBR 和 GPT