题意是一排路灯,每个路灯有耗电量,照明度,需要给这n个路灯按顺序分组,每组内的最大耗电量是电灯数乘t,可以选择关闭一些电灯,求最大的照明度;
这题思路很明显,预处理出一个g[i][j]表示i到j分为一组的最大照明度,f[i][j]表示前i个分为j组的最大照明度,f[i][j]=max(f[k-1][j-1]+f[k][i]);
朴素的预处理是这么搞的
int h[maxm*maxn];
for(int i=;i<=n;i++)
for(int j=i;j<=n;j++){
memset(h,,sizeof(h));
int s=(j-i+)*t;
for(int k=i;k<=j;k++)
for(int c=s;c>=;c--){
if(c<w[k])break;
h[c]=max(h[c],h[c-w[k]]+v[k]);
}
g[i][j]=g[j][i]=h[s];
}
n^4,无法接受,观察了一下,发现h数组每次都这么清一遍太浪费了,要想想怎么从前面的h中获取信息,发现每次h中有i-j的最优信息,然后处理i-j+1的时候相当于又处理了一遍i-j,要找i-j+1的g值,可以考虑一下不清空h数组,直接从j+1向上搞,但是每次最大耗电量都不一样,直接可以设成i-n的最大耗电,然后每次处理完后,在1-当前最大耗电里找最大值就行了,省了一维,可以通过了;
修改代码:
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<iomanip>
#include<cstdlib>
using namespace std;
const int maxn=,maxm=;
int n,m,t,w[maxn],v[maxn];
int g[maxn][maxn],f[maxn][maxm];
void init(){
scanf("%d%d%d",&n,&m,&t);
for(int i=;i<=n;i++)scanf("%d%d",&w[i],&v[i]);
int h[maxn*maxn];
for(int i=;i<=n;i++){
memset(h,,sizeof(h));
int s=(n-i+)*t;
for(int j=i;j<=n;j++){
int S=(j-i+)*t;
for(int c=s;c>=;c--){
if(c<w[j])break;
h[c]=max(h[c],h[c-w[j]]+v[j]);
}
g[i][j]=g[j][i]=h[S];
}
}
}
void work(){
for(int i=;i<=n;i++)
for(int k=;k<=m&&k<=i;k++){
for(int j=k;j<=i;j++){
f[i][k]=max(f[i][k],f[j-][k-]+g[j][i]);
}
}
cout<<f[n][m]<<endl;
}
int main(){
init();
work();
}