<题目链接>
题目大意:
有一个5*6的矩阵,每一位是0或者1。 没翻转一位,它的上下左右的数字也为改变。(0变成1,1变成0)。要把矩阵中所有的数都变成0。求最少翻转次数的方案,输出矩阵(需要翻转的地方用1表示,反则用0表示)。
解题分析:
利用高斯消元,把这30个开关想象成是30个方程,第i个开关状态对应于第i个方程的右边的值。左边的是所有能够影响到的开关的值。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std; const int N = ;
int a[N][N], ans[N];
int dx[] = { ,,,-, };
int dy[] = { ,,,,- };
int idx(int x, int y) { return (x - ) * + y; } void Gauss()
{
int i, j, k, l;
memset(ans, , sizeof(ans));
for (i = , j = ; i <= && j <= ; j++)
{
for (k = i; k <= ; k++)
if (a[k][j]) break; if (a[k][j])
{
for (l = ; l <= ; l++) swap(a[i][l], a[k][l]);
for (l = ; l <= ; l++) //debug从1开始(回代)
{
if (l != i && a[l][j])
for (k = ; k <= ; k++)
a[l][k] ^= a[i][k]; //高斯消元的^异或运算;
}
i++;
}
}
for (int j = ; j<i; j++) ans[j] = a[j][];
} int main()
{
int x, y, T, cas = ;
scanf("%d", &T);
while (T--)
{
memset(a, , sizeof(a));
for (int i = ; i <= ; i++)
for (int j = ; j <= ; j++)
{
scanf("%d", &a[idx(i, j)][]); //这里是将该矩阵按列线性存储
for (int k = ; k <= ; k++)
{
x = i + dx[k]; y = j + dy[k];
if (x> || y> || x< || y<) continue;
a[idx(i, j)][idx(x, y)] = ; //将这个点周围四个点全部置为1
}
} for (int i = ; i <= ; i++) a[i][i] = ;
Gauss();
printf("PUZZLE #%d\n", ++cas);
for (int i = ; i <= ; i++)
{
printf("%d ", ans[i]);
if (i % == ) printf("\n");
}
}
return ;
}
2018-08-08