大意: 给定序列, 求选出一个最长的子序列, 使得任选两个[1,8]的数字, 在子序列中的出现次数差不超过1, 且子序列中相同数字连续.
正解是状压dp, 先二分转为判断[1,8]出现次数>=x是否成立, 再dp求出前i位匹配状态S长度为x+1的数字个数的最大值, 特判一下最低次数为0的情况. 这题打了好久, 太菜了.......
#include <iostream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' using namespace std; typedef long long ll; typedef pair<int,int> pii; typedef bitset<10> btc; const int P = 1e9+7, INF = 0xbcbcbcbc; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} //head const int N = 1e3+10, S = (1<<8)-1; int n, ans; int a[N], dp[N][S+1], dig[S+1], f[N][N][9], g[S+1]; void chkmax(int &x, int y) {x=max(x,y);} void chkmin(int &x, int y) {x=min(x,y);} int chk(int x) { memset(dp, 0xbc, sizeof dp); dp[0][0] = 0; REP(i,1,n) REP(j,0,S-1) if (dp[i-1][j]!=INF) { for (int k=~j&S, t; k; k^=t) { t = k&-k; int p1 = f[i][x][dig[t]], p2 = f[i][x+1][dig[t]]; if (p1<=n) chkmax(dp[p1][j^t], dp[i-1][j]); if (p2<=n) chkmax(dp[p2][j^t], dp[i-1][j]+1); } } int r = INF; REP(i,1,n) chkmax(r,dp[i][S]); ans = max(ans, r+8*x); return r!=INF; } int main() { REP(i,0,7) dig[1<<i]=i+1; scanf("%d", &n); REP(i,1,n) scanf("%d", a+i); memset(f,0x3f,sizeof f); PER(i,1,n) REP(j,1,n) REP(k,1,8) { if (a[i]==k) f[i][1][k]=i,f[i][j][k]=f[i+1][j-1][k]; else chkmin(f[i][j][k],f[i+1][j][k]); } g[0] = 1; REP(i,1,n) REP(j,0,S) if (!(j>>a[i]-1&1)) { g[j^1<<a[i]-1] |= g[j]; } REP(i,0,S) if (g[i]) ans=max(ans,__builtin_popcount(i)); int l=1, r=n/8; while (l<=r) { if (chk(mid)) l=mid+1; else r=mid-1; } printf("%d\n", ans); }