- 题目描述:
-
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
- 输入:
-
n (1 < n < 17).
- 输出:
-
The
output format is shown as sample below. Each row represents a series of
circle numbers in the ring beginning from 1 clockwisely and
anticlockwisely. The order of numbers must satisfy the above
requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
- 样例输入:
-
6
8
- 样例输出:
-
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4 Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
- 提示:
-
用printf打印输出。
#include<iostream>
#include<stdio.h>
#include<queue>
using namespace std; int ans[];
bool mark[];
bool check(int a){
if ((a%2 == 0||a%3==0||a%5==0)&&a!=2&&a!=3&&a!=5)//因为输入的n<17,所以相邻数字加和小于32,合数的因子就235
return false;
return true;
}
int n;
void dfs(int cnt){
if (cnt> )
if (check(ans[cnt-]+ans[cnt-])==false)
return;
if (cnt==n)
if (check(ans[cnt-]+ans[])==false)
return;
if (cnt == n){
printf("");
for (int i=;i<n;i++){
printf(" %d",ans[i]);
}
printf("\n");
}
for (int i=;i<=n;i++){
if (mark[i]==false){
mark[i]=true;
ans[cnt]=i;
//cnt++;
dfs(cnt+);
mark[i]=false;
} }
} int main (){
int c=;
while (cin>>n){
c++;
for (int i=;i<=n;i++)
mark[i]=false;
ans[]=;
mark[]=true; printf("Case %d:\n",c);
dfs();
printf("\n");
} return ;
}
哎呀呀!他说我超时!!!!找了好久好久好久的bug
后来突然想起之前学长说printf比cout快
然后换了,ac了
刚刚粘题目的时候发现。。提示里面有,我没看见。哭哭
所以说啊,printf好啊,以后尽量用这个吧
这道题也很好啊,
标红是核心,好好看