链接:http://blog.csdn.net/zwlforever/archive/2008/03/14/2183049.aspx
一篇不错的FFT 文章,收藏一下。
DFT的的正变换和反变换分别为(1)和(2)式。假设有N个数据,则计算一个频率点需要N次复数乘法和N-1次复数加法,整个DFT需要N*N次复数乘法和N(N-1)次复数加法;由于一次的复数乘法需要进行4次的实数乘法和2次的复数加法,一次的复数加法需要两次的实数加法,因此整个DFT需要4*N*N次的实数乘法和2*N(N-1)+2*N*N≈4*N*N次的复数加法。当N比较大时,所需的计算工作量相当大,例如N=1024时大约需要400万次乘法运算,对于实时信号处理来说,将对计算设备提出非常苛刻的要求,于是就提出如何能够减少计算DFT的运算量的问题。
大多数的FFT算法都是利用(3)式的周期性、共轭对称性、可压缩和扩展性的特点来压缩计算量。。
1)、根据DFT定义进行计算的代码
void dft(complex<double>*Data,int Log2N,int flag)
{
int i,j,length;
complex<double> wn;
length=1<<Log2N;
complex<double>*temp=new complex<double>(length);
for(i=0;i<length;i++)
{
temp[i]=0;
for(j=0;j<length;j++)
{
wn=complex<double>(cos(2.0*pi/length*i*j),sin(flag*2.0*pi/length*i*j));
temp[i]+=Data[j]*wn;
}
}
if(flag==1)
for(i=0;i<length;i++)
Data[i]=temp[i]/length;
delete[] temp;
}
2)、基2时间抽选FFT
把时域的数字信号序列按照奇偶进行分组计算,可以进行如下的变换,从变换结果可以知道,一个长度为N的DFT可以变换成长度为N/2的两个子序列的组合。依次类推,可以直到转为N/2个2点的傅立叶变化的组合。不过这时的输入应该为以2为基的倒位序。
由于经过多次的奇偶抽选,输入数据要按照基2倒序的原则进行重排,输出数据为正常顺序,倒序算法另外叙述。下面首先用递归的形式进行算法的描述,由于递归方法没有充分利用DIT2算法的优点---原位计算,因此递归形式只是为了描述的清晰。
{
complex<double>*EvenData=new complex<double>(length/2);
complex<double>*OddData =new complex<double>(length/2);
complex<double>*EvenResult=new complex<double>(length/2);
complex<double>*OddResult=new complex<double>(length/2);
int i,j;
if(length==1)
{
OutData[0]=InData[0]/N;
return;
}
for(i=0;i<length/2;i++)
{
EvenData[i]=InData[2*i];
OddData[i]=InData[2*i+1];
}
dit2rec(EvenData,EvenResult,length/2,sign);
dit2rec(OddData,EvenResult,length/2,sign);
for(i=0;i<length/2;i++)
{
OutData[i]=EvenData+OddData*complex<double>(cos(2*pi*i/length),sin(sign*2*pi*i/length));
OutData[i+length/2]=EvenData- OddData*complex<double>(cos(2*pi*i/length),sin(sign*2*pi*i/length));
}
delete[] EvenData,OddData,EvenResult,OddResult;
return;
}
{
int i,j,k,step,length;
complex<double> wn,temp,deltawn;
length=1<<Log2N;
for(i=1;i<=Log2N;i++)
{
wn=1;step=1<<i;deltawn=complex<double>(cos(2*pi/step),sin(sign*2.0*pi/step));
for(j=0;j<step/2;j++)
{
for(i=0;i<length/step;i++)
{
temp=Data[i*step+step/2+j]*wn;
Data[i*step+step/2+j]=Data[i*step+j]-temp;
Data[i*step+j]=Data[i*step+j]+temp;
}
wn=wn*deltawn;
}
}
if(sign==-1)
for(i=0;i<length;i++)
Data[i]/=length;
}
{
int i,j,k,step,length;
complex<double> wn,temp,deltawn;
length=1<<Log2N;
for(i=0;i<length;i+=2)
{
temp=Data[i];
Data[i]=Data[i]+Data[i+1];
Data[i+1]=temp-Data[i+1];
}
for(i=2;i<=Log2N;i++)
{
wn=1;step=1<<i;deltawn=complex<double>(cos(2.0*pi/step),sin(sign*2.0*pi/step));;
for(j=0;j<step/2;j++)
{
for(i=0;i<length/step;i++)
{
temp=Data[i*step+step/2+j]*wn;
Data[i*step+step/2+j]=Data[i*step+j]-temp;
Data[i*step+j]=Data[i*step+j]+temp;
}
wn=wn*deltawn;
}
}
if(sign==1)
for(i=0;i<length;i++)
Data[i]/=length;
}
void dif2rec(complex<double>*InData,complex<double>*OutData,int length,int sign)
{
complex<double>* LData=new complex<double>(length/2);
complex<double>* LResult=new complex<double>(length/2);
complex<double>* RData=new complex<double>(length/2);
complex<double>* RResult=new complex<double>(length/2);
complex<double> temp;
int i;
if(length==1)
{
OutData[0]=InData[0];
return;
}
for(i=0;i<length/2;i++)
{
LData[i]=InData[i];
RData[i]=InData[i+length/2];
}
for(i=0;i<length/2;i++)
{
temp=LData[i];
LData[i]=LData[i]+RData[i];
RData[i]=(temp-RData[i])* complex<double>(cos(2*pi*i/length),sin(sign*2*pi*i/length))
}
dit2rec(LData,LResult,length/2,sign);
dit2rec(RData,RResult,length/2,sign);
for(i=0;i<length/2;i++)
{
OutData[2*i]=LResult[i];
OutData[2*i+1]=RResult[i];
}
return;
}
void dif2(complex<double>*InData,int r,int sign)
{
int length=1<<r;
int i,j,k,step;
complex<double> temp,wn;
for(i=1;i<=r;i++)
{
step=1<<(r-i+1);
wn=1;
for(j=0;j<step/2;j++)
{
for(k=0;k<step/2;k++)
{
temp=InData[k*step+j];
InData[k*step+j]=InData[k*step+j]-InData[k*step+step/2+j];
InData[k*step+step/2+j]=(temp-InData[k*step+step/2+j])*wn;
}
wn=wn*complex<double>(cos(2*pi/step*j),sin(sign*2*pi/step*j));
}
}
}
和DIT一样,最外层的最后一个循环可以另外独立出来,因为最后一个循环没有必要进行复数运算,这样可以减少复数运算的次数。
基四时间抽选快速傅立叶算法