CyclicBarrier
CyclicBarrier
栅栏,与CountDownLatch
类似,但不是基于AQS实现的同步器,用于多个线程之间等待。CyclicBarrier
每次使用完之后可以重置,CountDownLatch
不可重置,CyclicBarrier
同步一组线程,
CountDownLatch
同步两组线程(一组调用await()
方法阻塞等待,另一组调用countDown()
唤醒阻塞线程)。
CyclicBarrier
接收一个Runnable
对象,当线程全部到达(调用await()
),执行Runnable
。
内部类Generation
CyclicBarrier
每次重置都会生成新一代,所以CyclicBarrier
可以复用。
private static class Generation {
// broker = true意味着所有线程已经全部到达,可重置`CyclicBarrier`
boolean broken = false;
}
关键属性
/** The lock for guarding barrier entry */
private final ReentrantLock lock = new ReentrantLock();
// 当有线程到达时,如果count不能减到1,线程将会在该条件上等待
private final Condition trip = lock.newCondition();
// 总共需要等待的线程数
private final int parties;
// 所有等待线程都到达时执行该命令
private final Runnable barrierCommand;
/** The current generation */
private Generation generation = new Generation();
/**
* 还需要等待的线程。初始值为总共需要等待的线程,每到达一个线程,count减1,当count减0,表示所有线程
* 全部到达。当新产生一代或者栅栏被打破,count重置为parties
*/
private int count;
构造函数
/**
* @param parties 总共需要等待的线程数,线程数小于1,抛出异常
* @param barrierAction 最后一个线程到达,执行该command
*/
public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}
public CyclicBarrier(int parties) {
this(parties, null);
}
阻塞等待
线程到达之后,会在条件上等待,直到最后一个线程到达,最后一个线程到达时会执行command,并产生下一代。
// 阻塞线程
public int await() throws InterruptedException, BrokenBarrierException {
try {
return dowait(false, 0L);
} catch (TimeoutException toe) {
throw new Error(toe); // cannot happen
}
}
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
final Generation g = generation;
// 如果阻塞线程时,发现栅栏已经被打破,抛出异常
if (g.broken)
throw new BrokenBarrierException();
// 如果线程被打断,则打断栅栏,并抛出异常
if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
// 当前线程到达后剩余线程数
int index = --count;
// 线程已经全部到达
if (index == 0) { // tripped
boolean ranAction = false;
try {
// 在最后一个到达的线程上执行command
final Runnable command = barrierCommand;
if (command != null)
command.run();
ranAction = true;
// 产生新的一代 唤醒等待线程,重置count到parties,产生新一代,
nextGeneration();
return 0;
} finally {
// command执行失败,打破栅栏
if (!ranAction)
breakBarrier();
}
}
// loop until tripped, broken, interrupted, or timed out
// 自旋等待条件出现,线程中断,或超时
for (;;) {
try {
if (!timed)
trip.await();
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
// We're about to finish waiting even if we had not
// been interrupted, so this interrupt is deemed to
// "belong" to subseque nt execution.
Thread.currentThread().interrupt();
}
}
// 栅栏被打破,抛出异常
if (g.broken)
throw new BrokenBarrierException();
if (g != generation)
return index;
// 超时,打破栅栏,抛出异常
if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}
/**
* 产生新一代
* 1、唤醒所有等待的线程
* 2、重置count到parties
* 3、产生新的一代
*/
private void nextGeneration() {
// signal completion of last generation
trip.signalAll();
// set up next generation
count = parties;
generation = new Generation();
}
/**
* 打破栅栏
* 1、generation.broker = true标识栅栏已经被打破
* 2、重置count到parties
* 3、唤醒所有等待的线程
*/
private void breakBarrier() {
generation.broken = true;
count = parties;
trip.signalAll();
}
重置
/**
* 重置栅栏
* 1、打破栅栏
* 2、生成新一代
*/
public void reset() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
breakBarrier(); // break the current generation
nextGeneration(); // start a new generation
} finally {
lock.unlock();
}
}
已到达等待线程
public int getNumberWaiting() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return parties - count;
} finally {
lock.unlock();
}
}