1. 体验多进程的运行速度
#!/usr/bin/env python # _*_ coding:UTF-8 _*_ from multiprocessing import Pool import time def foo(n): time.sleep(1) return n * n if __name__ == "__main__": pool = Pool(10) data_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] # 这里只需要等待1S就能得到结果, 因为使用了多进程 print pool.map(foo, data_list) # 这里需要等待10S 才能得到结果, 因为没有使用多进程 print map(foo, data_list)
结果:
/Users/liudaoqiang/PycharmProjects/numpy/venv/bin/python /Users/liudaoqiang/Project/python_project/day24/processing_test.py [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] Process finished with exit code 0
注意:
(1)多进程的优势在于充分利用多核优势,因为多线程都是利用单核,只有多进程才能利用多核
2.子进程与父进程的关系
#!/usr/bin/env python # _*_ coding:UTF-8 _*_ from multiprocessing import Process import os def info(title): print "+++++++++++++" + title + "++++++++++++++" if hasattr(os, 'getppid'): print "ppid: %d" % os.getppid() print "pid: %d" % os.getpid() if __name__ == "__main__": info("main process") process = Process(target=info, args=("other process", )) process.start() process.join()
结果:
/Users/liudaoqiang/PycharmProjects/numpy/venv/bin/python /Users/liudaoqiang/Project/python_project/day24/processing_test_2.py +++++++++++++main process++++++++++++++ ppid: 490 pid: 593 +++++++++++++other process++++++++++++++ ppid: 593 pid: 594 Process finished with exit code 0
3.进程与线程的区别
#!/usr/bin/env python # _*_ coding:UTF-8 _*_ from multiprocessing import Process from threading import Thread def foo(li, item): li.append(item) print li if __name__ == "__main__": li = [] #注意:进程是不共享内存的,每个进程都有独立的内存空间;可以利用多核优势;是真正意义上的并发 print "+++++++++process+++++++++" for item in range(5): process = Process(target=foo, args=(li, item)) process.start() process.join() #注意:线程是共享同一份内存的,每个线程都在抢占内存空间;一个时间片只有一个线程占用内存;不是真正的并发 print "+++++++++thread++++++++++" for item in range(5): thread = Thread(target=foo, args=(li, item)) thread.start() thread.join()
结果:
+++++++++process+++++++++ [0] [1] [2] [3] [4] +++++++++thread++++++++++ [0] [0, 1] [0, 1, 2] [0, 1, 2, 3] [0, 1, 2, 3, 4]
4. 实现进程间的内存共享(使用进程的队列)
#!/usr/bin/env python # _*_ coding:UTF-8 _*_ from multiprocessing import Process, Queue def foo(que, item): que.put(item) if __name__ == "__main__": que = Queue() for item in range(5): process = Process(target=foo, args=(que, item)) process.start() while True: print que.get()
结果:
1 2 0 3 4
5. 实现进程间的内存共享(使用Value和Array)
#!/usr/bin/env python # _*_ coding:UTF-8 _*_ from multiprocessing import Process, Value, Array def foo(n, a): n.value = 3.1415926 for i in range(len(a)): a[i] = -a[i] if __name__ == "__main__": # 这里采用多进程提供的Value对象和Array对象 num = Value('d', 0) arr = Array('i', range(10)) # 调用foo方法,修改子进程的内存数据 process = Process(target=foo, args=(num, arr)) process.start() process.join() # 打印主进程定义的使用Value和Array定义的数据,发现也被修改;从而断定子进程与主进程共享了内存空间 print num.value print arr[:]
结果:
/Users/liudaoqiang/PycharmProjects/numpy/venv/bin/python /Users/liudaoqiang/Project/python_project/day24/processing_test_5.py 3.1415926 [0, -1, -2, -3, -4, -5, -6, -7, -8, -9] Process finished with exit code 0
6. 使用进程池开启进程
#!/usr/bin/env python #! _*_ coding:UTF-8 _*_ from multiprocessing import Pool import time def foo(x): print x * x time.sleep(1) return x * x if __name__ == "__main__": # 这里定义进程池,每次最多只有4个进程并行运行 pool = Pool(processes=4) res_list = [] for i in range(10): # 开启新的进程并启动,相当于Process(target=foo, args=(i)) res = pool.apply_async(foo, (i, )) # 要将进程的运行结果放入列表中,这时其实进程还还有执行函数foo res_list.append(res) for item in res_list: # 只有在区结果的时候,进程才真正执行函数 print item.get()
结果:看见每个时间段只有4个进程运行
/Users/liudaoqiang/PycharmProjects/numpy/venv/bin/python /Users/liudaoqiang/Project/python_project/day24/processing_test_6.py 0 1 4 9 16 25 36 0 1 49 4 9 64 81 16 25 36 49 64 81 Process finished with exit code 0