分析
-
一般递推式
-
向量递推式
代码
#include<bits/stdc++.h>
using namespace std;
#define MXM 4
#define mod(x) ((x)%M)
int L, M, f[5]={0, 2, 4, 6, 9}, A[MXM][MXM]={{1,0,1,1},{1,0,0,0},{0,1,0,0},{0,0,1,0}};
struct mat{
int d[MXM][MXM];
mat operator*(const mat x){
mat ret;
int tmp;
for(int i = 0; i < MXM; i++){
for(int j = 0; j < MXM; j++){
tmp = 0;
for(int k = 0; k < MXM; k++){
tmp = mod(tmp + d[i][k]* x.d[k][j]);
}
ret.d[i][j] = tmp;
}
}
return ret;
}
void init_unit(){
for(int i = 0; i < MXM; i++)
for(int j = 0; j < MXM; j++)
d[i][j] = i == j ? 1 : 0;
}
void init(){
for(int i = 0; i < MXM; i++){
for(int j = 0; j < MXM; j++){
this->d[i][j] = A[i][j];
}
}
}
}ma;
mat matrixPow(mat base, int pow){
mat res;
res.init_unit();
while(pow){
if(pow & 1) res = res * base;
base = base * base;
pow >>= 1;
}
return res;
}
int main(){
int tmp;
while(scanf("%d%d", &L, &M) == 2){
if(L <= MXM){
printf("%d\n", f[L]%M);
continue;
}
ma.init();
ma = matrixPow(ma, L-4);
int ans = 0;
for(int i = 0; i < MXM; i++)
ans = mod(ans+ma.d[0][i]*f[MXM-i]);
printf("%d\n", ans);
}
return 0;
}