K折交叉验证 - 方法1

项目背景:

波士顿房价预测,线性回归问题。基于Keras实现。使用 K 折验证可以可靠地评估模型。

此代码的交叉验证,没有调包。

from keras.datasets import boston_housing
from keras import models
from keras import layers
import numpy as np


(train_data, train_targets), (test_data, test_targets) = boston_housing.load_data()

# 标准化
mean = train_data.mean(axis=0)
train_data -= mean
std = train_data.std(axis=0)
train_data /= std
test_data -= mean
test_data /= std
# 测试数据标准化的均值和标准差都是在训练数据上计算得到的


def build_model():
    model = models.Sequential()
    model.add(layers.Dense(64, activation='relu', input_shape=(train_data.shape[1],)))
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(1))
    model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
    return model


k = 4
num_val_samples = len(train_data) // k
num_epochs = 100
all_scores = []
all_mae_histories = []

for i in range(k):
    print('processing fold #', i)
    val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
    val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
    partial_train_data = np.concatenate([train_data[:i * num_val_samples],
                                         train_data[(i + 1) * num_val_samples:]], axis=0)
    partial_train_targets = np.concatenate([train_targets[:i * num_val_samples],
                                            train_targets[(i + 1) * num_val_samples:]], axis=0)
    model = build_model()
    history = model.fit(partial_train_data, partial_train_targets,
                        validation_data=(val_data, val_targets),
                        epochs=num_epochs, batch_size=1, verbose=0)

    mae_history = history.history['val_mean_absolute_error']
    all_mae_histories.append(mae_history)


average_mae_history = [np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)]







 

K折交叉验证 - 方法1K折交叉验证 - 方法1 如果曾经拥有 发布了20 篇原创文章 · 获赞 5 · 访问量 2万+ 私信 关注
上一篇:吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:自然语言处理Word Embedding 单词向量化


下一篇:第2章 神经网络的数学基础