bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)

Description

今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。

Input

输入的第一行包含两个正整数,分别表示N和M。

Output

输出一个正整数,表示表格中所有数的和mod 20101009的值。

Sample Input

4 5

Sample Output

122
【数据规模和约定】
100%的数据满足N, M ≤ 107。
 
【思路】
 
  这个博客推倒过程挺详细的 click here
  我是图片的搬运工
  bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)
bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)
bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)
bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)
  
  到此为止,只要两个循环都用个分块就可以解决2154了。
 
【代码】
 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long ll;
const int N = 1e7+;
const int MOD = ; ll mu[N],su[N],sz,np[N];
int n,m,mx; void get_mu()
{
int i,j;
mu[]=;
for(i=;i<=mx;i++) {
if(!np[i])
su[++sz]=i,mu[i]=-;
for(j=;j<=sz&&i*su[j]<=mx;j++) {
np[i*su[j]]=;
if(i%su[j]==)
mu[i*su[j]]=;
else
mu[i*su[j]]=-mu[i];
}
}
for(i=;i<=mx;i++)
mu[i]=(mu[i-]+(ll)(mu[i]*i*i)%MOD)%MOD;
}
ll t(ll x,ll y)
{
return ((ll)(x*(x+)/%MOD)*(ll)(y*(y+)/%MOD)%MOD);
}
ll F(int n,int m)
{
int i,last; ll ans=;
for(i=;i<=n;i=last+) {
last=min(n/(n/i),m/(m/i));
ans=(ans+(ll)(mu[last]-mu[i-])*t(n/i,m/i)%MOD)%MOD;
}
return ans;
}
int main()
{
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
mx=n;
get_mu();
int last; ll ans=;
for(int i=;i<=n;i=last+) {
last=min(n/(n/i),m/(m/i));
ans=(ans+((ll)(i+last)*(last-i+)/*F(n/i,m/i)%MOD))%MOD;
}
printf("%lld",(ans+MOD)%MOD);
return ;
}

【优化】

  我是图片的搬运工

  bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)

  (H打错为F 233)

  积性函数的约数和也是积性函数,H(D) 可以用线性筛求,然后求下前缀和就好了。

  至此为止,可以解决2693的多查询问题了。

 
【代码】
 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long ll;
const int N = 1e7+;
const int MOD = ; ll sum[N],su[N],sz,np[N];
int n,m,mx; void get_mu()
{
int i,j;
sum[]=;
for(i=;i<=mx;i++) {
if(!np[i]) {
su[++sz]=i,
sum[i]=(i-(ll)i*i)%MOD;
}
for(j=;j<=sz&&i*su[j]<=mx;j++) {
np[i*su[j]]=;
if(i%su[j]==)
sum[i*su[j]]=(su[j]*sum[i])%MOD;
else
sum[su[j]*i]=(sum[su[j]]*sum[i])%MOD;
}
}
for(i=;i<=mx;i++)
sum[i]=(sum[i]+sum[i-])%MOD;
}
ll S(ll x,ll y)
{
return ((ll)(x*(x+)/%MOD)*(ll)(y*(y+)/%MOD)%MOD);
} int main()
{
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
mx=1e7;
get_mu();
int T; scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
mx=n; get_mu();
int last; ll ans=;
for(int i=;i<=n;i=last+) {
last=min(n/(n/i),m/(m/i));
ans=(ans+(ll)S(n/i,m/i)*(sum[last]-sum[i-])%MOD)%MOD;
}
printf("%lld\n",(ans+MOD)%MOD);
}
return ;
}
  两倍经验get :)
  最后扔上popoqqq神犇的ppt click here
 
上一篇:Python 函数参数引用(传值/传址)/copy/deepcopy


下一篇:asp.net总结(一)