[LeetCode] 437. Path Sum III_ Easy tag: DFS

You are given a binary tree in which each node contains an integer value.

Find the number of paths that sum to a given value.

The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).

The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.

Example:

root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8

      10
/ \
5 -3
/ \ \
3 2 11
/ \ \
3 -2 1 Return 3. The paths that sum to 8 are: 1. 5 -> 3
2. 5 -> 2 -> 1
3. -3 -> 11 这个题目的思路就是类似于[LeetCode] 113. Path Sum II, 只不过我们不需要一定是leaf再判断, 同时recursive root.left and root.right, 最后返回总的个数即可. 1. Constraints
1) empty => 0 2. IDeas DFS T: O(n^2) worst cases, when like linked lists
T: O(nlgn) best cases, when balanced tree because height = lgn 1) edge case, if not root: return 0
2) create a helper function, get number of paths from root -> any child node s.t sum(path) == target
3) return helper(root) and recursively call root.left and root.right 3. Code
 class Solution:
def pathSum3(self, root, target):
def rootSum(root, target): # helper function to get number of paths from root -> any child node s.t sum == target
if not root: return 0
d = target - root.val
temp = 1 if d == 0 else 0
return temp + rootSum(root.left, d) + rootSum(root.right, d)
if not root: return 0
return rootSum(root, target) + self.pathSum3(root.left, target) + self.pathSum3(root.right, target)

4. Test cases

1) empty

2) 1, 1

3)

1
/ \
1 1
target = 1
4)
target = 8
      10
/ \
5 -3
/ \ \
3 2 11
/ \ \
3 -2 1
上一篇:Easy Tag Write(3.2)


下一篇:使用dynamic获取类型可变的json对象