noi2010 能量采集

2005: [Noi2010]能量采集

Time Limit: 10 Sec  Memory Limit: 552 MB Submit: 3068  Solved: 1820 [Submit][Status][Discuss]

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】 5 4
【样例输入2】 3 4

Sample Output

【样例输出1】 36
【样例输出2】 20
【数据规模和约定】 对于10%的数据:1 ≤ n, m ≤ 10;
对于50%的数据:1 ≤ n, m ≤ 100;
对于80%的数据:1 ≤ n, m ≤ 1000;
对于90%的数据:1 ≤ n, m ≤ 10,000;
对于100%的数据:1 ≤ n, m ≤ 100,000。

HINT

 

Source

 

[Submit][Status][Discuss]分析:对于一个点(m,n)而言,这个点和原点(0,0)连线在整点上的个数为gcd(n,m),也就是说本题让我们求所有坐标gcd的总和,如果一个一个算会很耗时间,既然要求gcd,那么我们可以先求出公因数,可以知道最大的gcd就是min(n,m),所以算出来的公因数一定是几个坐标的gcd,所以我们用(n/i) * (m/i)求出因数为i的数的个数,这样会重复计算2i,3i4i......的个数,根据容斥原理减去这些个数就行,然后就能做出来了

#include <cstdio>
#include <cstring>
#include <string>
#include <iostream>
#include <algorithm> using namespace std; long long f[];
long long n, m; int main()
{
scanf("%lld%lld", &n, &m);
long long sum = ;
for (int i = min(n, m); i >= ; i--)
{
f[i] = (n / i) * (m / i);
for (int j = i + i; j <= n; j += i)
f[i] -= f[j];
sum += f[i] * (i + i + );
//printf("%d\n",f[i]);
}
printf("%lld", sum); return ;
}
上一篇:关于pandas里面的合并


下一篇:程序配置的原则和实践以及 Spring Boot 支持方式