题目链接
题目大意
给你 n块木板(n<=40),每块木板长度为\(l[i]<=40\)
每块木板都要用,求最大的三角形面积×100,答案直接舍去小数
题目思路
首先如果已知三条边的长度可以直接用海伦公式求出三角形面积
\(p=(a+b+c)/2\)
\(s=\sqrt{p*(p-a)*(p-b)*(p-c)}\)
显然你只要知道两条边的长度,你就可以直接剩下边的长度。
这个题目有点类似于给你几个数,你是否可以组成另一个数,这个就是显然的01背包
这个只是看能否组成两条边,只是多了一重循环,本质上还是01背包
代码
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<unordered_map>
#define fi first
#define se second
//#define int long long
#define debug printf(" I am here\n");
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int maxn=1e3+5,inf=0x3f3f3f3f,mod=1e9+7;
const double eps=1e-10;
int n,a[maxn],sum;
bool dp[maxn][maxn];
double cal(int a,int b,int c){
double s=1.0*(a+b+c)/2;
return sqrt(s*(s-a)*(s-b)*(s-c));
}
bool check(int a,int b,int c){
if(a+b>c&&b+c>a&&a+c>b){
return 1;
}else{
return 0;
}
}
signed main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
sum+=a[i];
}
dp[0][0]=1;
for(int i=1;i<=n;i++){
for(int j=sum/2;j>=0;j--){
for(int k=j;k>=0;k--){
if((j>=a[i]&&dp[j-a[i]][k])||(k>=a[i]&&dp[j][k-a[i]])){
dp[j][k]=1;
}
}
}
}
double ans=0;
for(int j=sum/2;j>=0;j--){
for(int k=j;k>=0;k--){
int res=sum-j-k;
if(!dp[j][k]) continue;
if(res<0||(!check(j,k,res))) continue;
ans=max(ans,cal(j,k,res));
}
}
if(abs(ans-0)<eps){
cout<<-1<<endl;
}else{
printf("%lld\n",(int)(100*ans));
}
return 0;
}