matlab调用神经网络工具箱实现神经网络以手写数字识别为例

matlab调用神经网络工具箱实现神经网络示例

以下是调用神经网络工具箱实现手写数字识别的代码

intput=400;
hidden=50;
output=10;
% Load Training Data

load('data.mat');

m = size(X, 1);
X=X';


% convert y(0-9) to vector
c = 1:output;
yt = zeros(output,m); 
for i = 1:m
    yt(:,i) = (c==y(i));   
end    



P=X;%神经网络输入
T=yt;%神经网络输出目标
%定义神经网络,采用正切和线性激活函数,采用powell-beale共轭梯度法
net=newff(P,T,[50],{'tansig' 'purelin'} ,'traincgb');


net.trainParam.epochs=200;%迭代200次
net.trainParam.goal=1e-5;

[net,tr]=train(net,P,T);%训练网络
yp=sim(net,X);%仿真预测
yp=yp';

[d, p] = max(yp, [], 2);%返回最大值索引

fprintf('\nTrainning Set Accuracy: %f\n', mean(double(p == y)) * 100);
上一篇:movable-view组件(拖拽缩放)


下一篇:yp多冲集合组合数