3192: [JLOI2013]删除物品
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1366 Solved: 794
[Submit][Status][Discuss]
Description
箱子再分配问题需要解决如下问题:
(1)一共有N个物品,堆成M堆。
(2)所有物品都是一样的,但是它们有不同的优先级。
(3)你只能够移动某堆中位于顶端的物品。
(4)你可以把任意一堆中位于顶端的物品移动到其它某堆的顶端。若此物品是当前所有物品中优先级最高的,可以直接将之删除而不用移动。
(5)求出将所有物品删除所需的最小步数。删除操作不计入步数之中。
(6)只是一个比较难解决的问题,这里你只需要解决一个比较简单的版本:
不会有两个物品有着相同的优先级,且M=2
Input
第一行是包含两个整数N1,N2分别表示两堆物品的个数。
接下来有N1行整数按照从顶到底的顺序分别给出了第一堆物品中的优先级,数字越大,优先级越高。
再接下来的N2行按照同样的格式给出了第二堆物品的优先级。
Output
对于每个数据,请输出一个整数,即最小移动步数。
Sample Input
3 3
1
4
5
2
7
3
Sample Output
6
HINT
1<=N1+N2<=100000
容易想到对顶栈
但是暴力模拟超时,所以我们直接用树状数组模拟就行了
把第一个栈反着存,第二个栈接着上一个正着存,存栈顶位置,每次统计栈顶到最大值距离更新栈顶即可
爆int QAQ
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
int i,m,n,j,k,a[1000001],c[1000001],z[1000001];
LL ans;
struct vv
{
int w,z;
} d[1000001];
bool cmp(vv a,vv b){return a.z>b.z;}
void add(int now,int x)
{
for(int i=now;i<=n;i+=i & -i) c[i]+=x;
}
LL find(int now)
{
LL ans=0;
for(int i=now;i>0;i-=i & -i) ans+=(LL)c[i];
return ans;
}
int main()
{
scanf("%d%d",&n,&m);
for(i=n;i>=1;i--) scanf("%d",&a[i]), d[i].z=a[i], d[i].w=i;
for(i=n+1;i<=n+m;i++) scanf("%d",&a[i]), d[i].z=a[i], d[i].w=i;
sort(d+1,d+1+n+m,cmp);
n=n+m; m=n-m;
for(i=1;i<=n;i++) add(i,1);
for(i=1;i<=n;i++)
{
if(d[i].w<=m) ans+=find(m)-find(d[i].w), m=d[i].w;
else ans+=find(d[i].w-1)-find(m), m=d[i].w;
add(d[i].w,-1);
}
printf("%lld",ans);
}