参考:http://blog.csdn.net/scelong/article/details/6969276
Python生成器
什么是python生成器,意思是带有一个yield语句的函数,既然它是个函数,那么与普通的函数有什么关系呢?
生成器是这样一个函数:记住上一次返回时在函数体中的位置。对生成器函数的第二次(或第 n 次)调用跳转至该函数中间,而上次调用的所有局部变量都保持不变。
生成器不仅“记住”了它数据状态;生成器还“记住”了它在流控制构造(在命令式编程中,这种构造不只是数据值)中的位置。
生成器的特点:
生成器是一个函数,而且函数的参数都会保留。
迭代到下一次的调用时,所使用的参数都是第一次所保留下的,即是说,在整个所有函数调用的参数都是第一次所调用时保留的,而不是新创建的
yield 生成器的运行机制:
当你问生成器要一个数时,生成器会执行,直至出现 yield 语句,生成器把 yield 的参数给你,之后生成器就不会往下继续运行。 当你问他要下一个数时,他会从上次的状态。开始运行,直至出现yield语句,把参数给你,之后停下。如此反复直至退出函数。
例:
def fib(max):
a, b = 1, 1
while a < max:
yield a #generators return an iterator that returns a stream of values.
a, b = b, a+b
程序运行:
for n in fib(15):
print n
从前面的运行机制描述中,可以获知,程序运行到yield这行时,就不会继续往下执行。而是返回一个包含当前函数所有参数的状态的iterator对象。目的就是为了第二次被调用时,能够访问到函数所有的参数值都是第一次访问时的值,而不是重新赋值。
于是输出结果:
1 // 第一次调用
1 // 此时a为1,b为2
2 // 依次类推
3
5
8
13
程序第一次调用时:
def fib(max):
a, b = 1, 1
while a < max:
yield a #这时a,b值分别为1,1,当然,程序也在执行到这时,返回
a, b = b, a+b
程序第二次调用时:
从前面可知,第一次调用时,a,b=1,1,那么,我们第二次调用时(其实就是调用第一次返回的iterator对象的next()方法),程序跳到yield语句处,
执行a,b = b, a+b语句,此时值变为:a,b = 1, (1+1) => a,b = 1, 2
程序继续while循环,当然,再一次碰到了yield a 语句,也是像第一次那样,保存函数所有参数的状态,返回一个包含这些参数状态的iterator对象。
等待第三次的调用:
def fib(max):
a, b = 1, 1
while a < max:
yield a // 此时a为上一次存下来的2
a, b = b, a+b
后面就是依次类推的过程了!
生成器与迭代器的区别:
生成器就是一种迭代器。生成器拥有next方法并且行为与迭代器完全相同,这意味着生成器也可以用于Python的for循环中。
Python的for循环中,有next()调用和对StopIteration的处理,这样使得生成器和迭代器运行表象上看似相同,如下:
iterator = [i for i in range(5)]
for obj in iterator:
print obj,
# 0 1 2 3 4 generator = (i for i in range(5))
for obj in generator:
print obj,
#0 1 2 3 4
当你使用一个列表生成式来建立一个列表的时候,就建立了一个可迭代的对象, 看起来除了把 [] 换成 () 外没什么不同。但是,你不可以再次使用 for i in mygenerator , 因为生成器只能被跌代一次:先计算出0,然后继续计算1,然后计算4,一个跟一个的。
注意: 所有你可以使用 for .. in .. 语法的叫做一个迭代器:链表,字符串,文件... 你经常使用它们是因为你可以如你所愿的读取其中的元素,但是你把所有的值都存储到了内存中,如果你有大量数据的话这个方式并不是你想要的。