Codeforces 934.C A Twisty Movement

C. A Twisty Movement
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

A dragon symbolizes wisdom, power and wealth. On Lunar New Year's Day, people model a dragon with bamboo strips and clothes, raise them with rods, and hold the rods high and low to resemble a flying dragon.

A performer holding the rod low is represented by a 1, while one holding it high is represented by a 2. Thus, the line of performers can be represented by a sequence a1, a2, ..., an.

Little Tommy is among them. He would like to choose an interval [l, r] (1 ≤ l ≤ r ≤ n), then reverse al, al + 1, ..., ar so that the length of the longest non-decreasing subsequence of the new sequence is maximum.

A non-decreasing subsequence is a sequence of indices p1, p2, ..., pk, such that p1 < p2 < ... < pk and ap1 ≤ ap2 ≤ ... ≤ apk. The length of the subsequence is k.

Input

The first line contains an integer n (1 ≤ n ≤ 2000), denoting the length of the original sequence.

The second line contains n space-separated integers, describing the original sequence a1, a2, ..., an (1 ≤ ai ≤ 2, i = 1, 2, ..., n).

Output

Print a single integer, which means the maximum possible length of the longest non-decreasing subsequence of the new sequence.

Examples
input
4
1 2 1 2
output
4
input
10
1 1 2 2 2 1 1 2 2 1
output
9
Note

In the first example, after reversing [2, 3], the array will become [1, 1, 2, 2], where the length of the longest non-decreasing subsequence is 4.

In the second example, after reversing [3, 7], the array will become [1, 1, 1, 1, 2, 2, 2, 2, 2, 1], where the length of the longest non-decreasing subsequence is 9.

题目大意:给一个只有1,2组成的序列,要求翻转一个区间,使得最长不下降子序列尽可能长.

分析:读错题坑了我40分钟.子序列可以不连续!

   考虑没有翻转操作.那么答案肯定是一个位置左边的1的数量+右边的2的数量,取max. 那么我们可以统计1的前缀和,2的后缀和.

   如果有翻转操作.其实就是翻转的区间中的一个位置统计1的后缀和,同时在这个位置统计2的前缀和,最后和两个端点处的相减.

具体来说,如果记sum1为1的前缀和,sum2为2的后缀和,sum3为1的后缀和,sum4为2的前缀和,翻转的两个区间端点为a,b.那么答案就是max{sum1[a - 1] + sum2[b + 1] + sum3[i + 1] - sum3[b + 1] + sum4[i] - sum4[a - 1]}.实际上变动的就是sum3[i + 1]与sum4[i],求出一个区间内它们的最大值,有很多方法.我偷懒用线段树维护.

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; typedef long long ll; int n,a[],ans,f[][],sum1[],sum2[],sum3[],sum4[],b[],maxx[ << ]; void pushup(int o)
{
maxx[o] = max(maxx[o * ],maxx[o * + ]);
} void build(int o,int l,int r)
{
if (l == r)
{
maxx[o] = b[l];
return;
}
int mid = (l + r) >> ;
build(o * ,l,mid);
build(o * + ,mid + ,r);
pushup(o);
} int query(int o,int l,int r,int x,int y)
{
if (x <= l && r <= y)
return maxx[o];
int mid = (l + r) >> ,res = -;
if (x <= mid)
res = max(res,query(o * ,l,mid,x,y));
if (y > mid)
res = max(res,query(o * + ,mid + ,r,x,y));
return res;
} int main()
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
scanf("%d",&a[i]);
for (int i = ; i <= n; i++)
sum1[i] = sum1[i - ] + (a[i] == ? : );
for (int i = n; i >= ; i--)
sum2[i] = sum2[i + ] + (a[i] == ? : );
for (int i = n; i >= ; i--)
sum3[i] = sum3[i + ] + (a[i] == ? : );
for (int i = ; i <= n; i++)
sum4[i] = sum4[i - ] + (a[i] == ? : );
for (int i = ; i <= n; i++)
b[i] = sum4[i] + sum3[i + ];
build(,,n);
for (int i = ; i <= n; i++)
{
for (int j = i; j <= n; j++)
{
int temp = query(,,n,i - ,j);
ans = max(ans,sum1[i - ] + sum2[j + ] + temp - sum3[j + ] - sum4[i - ]);
}
}
printf("%d\n",ans); return ;
}
上一篇:salesforce零基础学习(七十九)简单排序浅谈 篇一


下一篇:cf A. Inna and Pink Pony(思维题)