2018牛客网暑期ACM多校训练营(第九场)A -Circulant Matrix(FWT)

分析

大佬说看样例就像和卷积有关。

把题目化简成a*x=b,这是个xor的FWT。

FWT的讲解请看:https://www.cnblogs.com/cjyyb/p/9065615.html

那么要求的是x,所以我们得逆着来,则对b进行IFWT,对a FWT,然后c=b/a,于是x=FWT(c).

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define ms(a, b) memset(a, b, sizeof(a))
#define pb push_back
#define mp make_pair
#define pii pair<int, int>
#define IOS ios::sync_with_stdio(0);cin.tie(0);
#define random(a, b) rand()*rand()%(b-a+1)+a
#define pi acos(-1.0)
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
const int maxn = 3e5+;
const int maxm = 1e5+;
const int mod = 1e9+;
ll qpow(ll a,ll b){
ll res=;
while(b){
if(b&) res=res*a%mod;
b>>=;
a=a*a%mod;
}
return res;
}
ll inv = ;
void IFWT(int a[],int n){
for(int d=;d<n;d<<=)
for(int m=d<<,i=;i<n;i+=m)
for(int j=;j<d;j++){
int x = a[i+j],y=a[i+j+d];
a[i+j]=(x+y)%mod*inv%mod;
a[i+j+d]=(x-y+mod)%mod*inv%mod;
}
} void FWT(int a[],int n){
for(int d=;d<n;d<<=)
for(int m=d<<,i=;i<n;i+=m)
for(int j=;j<d;j++){
int x = a[i+j],y=a[i+j+d];
a[i+j]=(x+y)%mod;
a[i+j+d]=(x-y+mod)%mod;
}
}
int a[maxn],b[maxn];
int main(){
#ifdef LOCAL
freopen("in.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
int n;
scanf("%d",&n);
for(int i=;i<n;i++) scanf("%d",&a[i]);
for(int i=;i<n;i++) scanf("%d",&b[i]);
FWT(a,n);
IFWT(b,n);
for(int i=;i<n;i++) a[i]=b[i]*qpow(a[i],mod-)%mod;
FWT(a,n);
for(int i=;i<n;i++) cout<<a[i]<<endl;
return ;
}
上一篇:Autofac 解释第一个例子 《第一篇》


下一篇:大课深度复盘、解密研发效率之道 | 第42届MPD工作坊成都站日程公布!