机器视觉处理

一、ROS+OpenCV图像处理

OpenCV是跨平台的的开源计算机视觉库。ROS中使用OpenCV时,需要注意图像数据的转换。cv_bridge_test.py脚本文件可以实现该转换功能,文件内容如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import rospy
import cv2
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image

class image_converter:
    def __init__(self):    
        # 创建cv_bridge,声明图像的发布者和订阅者
        self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1)
        self.bridge = CvBridge()
        self.image_sub = rospy.Subscriber("/usb_cam/image_raw", Image, self.callback)

    def callback(self,data):
        # 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
        try:
            cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
        except CvBridgeError as e:
            print e

        # 在opencv的显示窗口中绘制一个圆,作为标记
        (rows,cols,channels) = cv_image.shape
        if cols > 60 and rows > 60 :
            cv2.circle(cv_image, (60, 60), 30, (0,0,255), -1)

        # 显示Opencv格式的图像
        cv2.imshow("Image window", cv_image)
        cv2.waitKey(3)

        # 再将opencv格式额数据转换成ros image格式的数据发布
        try:
            self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))
        except CvBridgeError as e:
            print e

if __name__ == '__main__':
    try:
        # 初始化ros节点
        rospy.init_node("cv_bridge_test")
        rospy.loginfo("Starting cv_bridge_test node")
        image_converter()
        rospy.spin()
    except KeyboardInterrupt:
        print "Shutting down cv_bridge_test node."
        cv2.destroyAllWindows()

imgmsg_to_cv2():ROS图像数据格式转换成OpenCV图像格式。
cv2_to_imgmsg():OpenCV图像数据格式转换成ROS图像格式。

二、人脸识别

通过人脸识别的方式实现以下场景:

  • 通过人脸识别的方式,发布速度控制命令,控制仿真机器人运动。例如:人脸向左移动,小车向左转,人脸向前移动,小车前进。

2.1 思路

物体的识别后会得到物体在图片中的中心点(x, y)和识别物体大小的矩形宽(w)和高(h),我们可以借助(x, y)处于图片的什么区域对小车转向进行控制,而识别物体的矩形框的大小可以控制小车的前进后退。
假设摄像机采集的图片分辨率为\(W \times H\),则有小车的控制规则如下:

if ( w > W/2 and h > H/2): 
	小车前进
else:
	小车后退
if (x > W/2):
	小车右转
else:
	小车左转

2.2 基于检测人脸控制小车

roslaunch mbot_gazebo  view_mbot_gazebo_empty_world_automobile.launch  #打开小车模型
roslaunch robot_vision usb_cam.launch #打开摄像头
roslaunch robot_vison face_detector.launch  #基于人脸检测控制小车
rqt_image_view

其中usb_cam.launch内容如下:

<launch>

  <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
    <param name="video_device" value="/dev/video0" />
    <param name="image_width" value="640" />
    <param name="image_height" value="480" />
    <param name="pixel_format" value="yuyv" />
    <param name="camera_frame_id" value="usb_cam" />
    <param name="io_method" value="mmap"/>
  </node>

</launch>

face_detector.launch如下:

<launch>
    <node pkg="robot_vision" name="face_detector" type="face_detector.py" output="screen">
        <remap from="input_rgb_image" to="/usb_cam/image_raw" />
        <rosparam>
            haar_scaleFactor: 1.2
            haar_minNeighbors: 2
            haar_minSize: 40
            haar_maxSize: 60
        </rosparam>
        <param name="cascade_1" value="$(find robot_vision)/data/haar_detectors/haarcascade_frontalface_alt.xml" />
        <param name="cascade_2" value="$(find robot_vision)/data/haar_detectors/haarcascade_profileface.xml" />
    </node>
</launch>

核心算法脚本文件face_detector.py,其内容如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
import cv2
import numpy as np
from sensor_msgs.msg import Image, RegionOfInterest
from cv_bridge import CvBridge, CvBridgeError

from geometry_msgs.msg import Twist

class faceDetector:
    def __init__(self):
        rospy.on_shutdown(self.cleanup);

        # 创建cv_bridge
        self.bridge = CvBridge()
        self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1)

        # create commond of 'mbot_teleop_object'
        self.mbot_teleop_object = rospy.Publisher('/cmd_vel', Twist, queue_size=5)

        # 获取haar特征的级联表的XML文件,文件路径在launch文件中传入
        cascade_1 = rospy.get_param("~cascade_1", "")
        cascade_2 = rospy.get_param("~cascade_2", "")

        # 使用级联表初始化haar特征检测器
        self.cascade_1 = cv2.CascadeClassifier(cascade_1)
        self.cascade_2 = cv2.CascadeClassifier(cascade_2)

        # 设置级联表的参数,优化人脸识别,可以在launch文件中重新配置
        self.haar_scaleFactor  = rospy.get_param("~haar_scaleFactor", 1.2)
        self.haar_minNeighbors = rospy.get_param("~haar_minNeighbors", 2)
        self.haar_minSize      = rospy.get_param("~haar_minSize", 40)
        self.haar_maxSize      = rospy.get_param("~haar_maxSize", 60)
        self.color = (50, 255, 50)

        # 初始化订阅rgb格式图像数据的订阅者,此处图像topic的话题名可以在launch文件中重映射
        self.image_sub = rospy.Subscriber("input_rgb_image", Image, self.image_callback, queue_size=1)

    def image_callback(self, data):
        # 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
        try:
            cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")     
            frame = np.array(cv_image, dtype=np.uint8)
        except CvBridgeError, e:
            print e

        # 创建灰度图像
        grey_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

        # 创建平衡直方图,减少光线影响
        grey_image = cv2.equalizeHist(grey_image)

        # 尝试检测人脸
        faces_result = self.detect_face(grey_image)

        # 创建并发布twist消息
        twist = Twist()
        image_w = grey_image.shape[0]
        image_h = grey_image.shape[1]
        # 在opencv的窗口中框出所有人脸区域
        if len(faces_result)>0:
            for face in faces_result: 
                x, y, w, h = face
                cv2.rectangle(cv_image, (x, y), (x+w, y+h), self.color, 2)
                
                rospy.loginfo("my face detector (x=%d, y=%d, w=%d, h=%d)", x, y, w, h)
                info = ""
                if( w > image_w/2 and h > image_h/2): #front
                    twist.linear.x = 0.5
                    info += "front"
                else:
                    twist.linear.x = -0.5  #back
                    info += "back"
                twist.linear.y = 0; 
                twist.linear.z = 0; 
                twist.angular.x = 0; 
                twist.angular.y = 0; 
                if (x > image_w/2):
                    twist.angular.z = 0.5 #turn right
                    info += "-right"
                else:
                    twist.angular.z = -0.5 #turn left
                    info += "-left"
                    
                rospy.loginfo("my twist(l_x=%f, a_z=%f)", twist.linear.x, twist.angular.z)
                rospy.loginfo(info)

        self.mbot_teleop_object.publish(twist)
        # 将识别后的图像转换成ROS消息并发布
        self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))

    def detect_face(self, input_image):
        # 首先匹配正面人脸的模型
        if self.cascade_1:
            faces = self.cascade_1.detectMultiScale(input_image, 
                    self.haar_scaleFactor, 
                    self.haar_minNeighbors, 
                    cv2.CASCADE_SCALE_IMAGE, 
                    (self.haar_minSize, self.haar_maxSize))
                                         
        # 如果正面人脸匹配失败,那么就尝试匹配侧面人脸的模型
        if len(faces) == 0 and self.cascade_2:
            faces = self.cascade_2.detectMultiScale(input_image, 
                    self.haar_scaleFactor, 
                    self.haar_minNeighbors, 
                    cv2.CASCADE_SCALE_IMAGE, 
                    (self.haar_minSize, self.haar_maxSize))
        
        return faces

    def cleanup(self):
        print "Shutting down vision node."
        cv2.destroyAllWindows()

if __name__ == '__main__':
    try:
        # 初始化ros节点
        rospy.init_node("face_detector")
        faceDetector()
        rospy.loginfo("Face detector is started..")
        rospy.loginfo("Please subscribe the ROS image.")
        rospy.spin()
    except KeyboardInterrupt:
        print "Shutting down face detector node."
        cv2.destroyAllWindows()

效果如下:
机器视觉处理

三、物体识别

复现tensorflow物体识别的案例,并实现以下的物体跟随场景:

  • 识别一个杯子及其在图像中的位置。
  • 根据杯子的识别结果,发布速度控制命令,控制仿真机器人的运动。例如:杯子远离摄像头,小车前进,杯子在图像中向左运动,小车左转。

创建tensorflow_object_detector功能包,运行命令如下:

roslaunch mbot_gazebo  view_mbot_gazebo_empty_world_automobile.launch  #打开小车模型
roslaunch tensorflow_object_detector usb_cam_detector.launch  #基于水杯检测控制小车

其中usb_cam_detector.launch为相机启动文件,内容如下:

<launch>
	<node pkg= "tensorflow_object_detector" name="detect_ros" type="detect_ros.py"  output="screen"> 
    <remap from="image" to="/usb_cam_node/image_raw"/>
	</node>

  <node pkg="usb_cam" type="usb_cam_node" name="usb_cam_node" output="screen">
    <param name="pixel_format" value="yuyv"/>
    <param name="video_device" value="/dev/video0"/>
  </node>

  <node pkg="image_view" type="image_view" name="image_view">
    <remap from="image" to="debug_image"/>
  </node>
</launch>

核心算法脚本文件detect_ros.py,其内容如下:

#!/usr/bin/env python
## Author: Rohit
## Date: July, 25, 2017
# Purpose: Ros node to detect objects using tensorflow

import os
import sys
import cv2
import numpy as np
try:
    import tensorflow as tf
except ImportError:
    print("unable to import TensorFlow. Is it installed?")
    print("  sudo apt install python-pip")
    print("  sudo pip install tensorflow")
    sys.exit(1)

# ROS related imports
import rospy
from std_msgs.msg import String , Header
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
from vision_msgs.msg import Detection2D, Detection2DArray, ObjectHypothesisWithPose

# Object detection module imports
import object_detection
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util

from geometry_msgs.msg import Twist

# SET FRACTION OF GPU YOU WANT TO USE HERE
GPU_FRACTION = 0.4

######### Set model here ############
MODEL_NAME =  'ssd_mobilenet_v1_coco_11_06_2017'
# By default models are stored in data/models/
MODEL_PATH = os.path.join(os.path.dirname(sys.path[0]),'data','models' , MODEL_NAME)
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_PATH + '/frozen_inference_graph.pb'
######### Set the label map file here ###########
LABEL_NAME = 'mscoco_label_map.pbtxt'
# By default label maps are stored in data/labels/
PATH_TO_LABELS = os.path.join(os.path.dirname(sys.path[0]),'data','labels', LABEL_NAME)
######### Set the number of classes here #########
NUM_CLASSES = 90

detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')

## Loading label map
# Label maps map indices to category names, so that when our convolution network predicts `5`,
# we know that this corresponds to `airplane`.  Here we use internal utility functions,
# but anything that returns a dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

# Setting the GPU options to use fraction of gpu that has been set
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = GPU_FRACTION

# Detection

class Detector:

    def __init__(self):
        self.image_pub = rospy.Publisher("debug_image",Image, queue_size=1)
        self.object_pub = rospy.Publisher("objects", Detection2DArray, queue_size=1)
        self.bridge = CvBridge()
        self.image_sub = rospy.Subscriber("image", Image, self.image_cb, queue_size=1, buff_size=2**24)
        self.sess = tf.Session(graph=detection_graph,config=config)

        # create commond of 'mbot_teleop_object'
        self.mbot_teleop_object = rospy.Publisher('/cmd_vel', Twist, queue_size=5)

    def image_cb(self, data):
        objArray = Detection2DArray()
        try:
            cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
        except CvBridgeError as e:
            print(e)
        image=cv2.cvtColor(cv_image,cv2.COLOR_BGR2RGB)

        # the array based representation of the image will be used later in order to prepare the
        # result image with boxes and labels on it.
        image_np = np.asarray(image)
        # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
        image_np_expanded = np.expand_dims(image_np, axis=0)
        image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
        # Each box represents a part of the image where a particular object was detected.
        boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
        # Each score represent how level of confidence for each of the objects.
        # Score is shown on the result image, together with the class label.
        scores = detection_graph.get_tensor_by_name('detection_scores:0')
        classes = detection_graph.get_tensor_by_name('detection_classes:0')
        num_detections = detection_graph.get_tensor_by_name('num_detections:0')

        (boxes, scores, classes, num_detections) = self.sess.run([boxes, scores, classes, num_detections],
            feed_dict={image_tensor: image_np_expanded})

        objects=vis_util.visualize_boxes_and_labels_on_image_array(
            image,
            np.squeeze(boxes),
            np.squeeze(classes).astype(np.int32),
            np.squeeze(scores),
            category_index,
            use_normalized_coordinates=True,
            line_thickness=2)

        objArray.detections =[]
        objArray.header=data.header
        object_count=1

        for i in range(len(objects)):
            object_count+=1
            objArray.detections.append(self.object_predict(objects[i],data.header,image_np,cv_image))

        self.object_pub.publish(objArray)

        img=cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
        image_out = Image()
        try:
            image_out = self.bridge.cv2_to_imgmsg(img,"bgr8")
        except CvBridgeError as e:
            print(e)
        image_out.header = data.header
        self.image_pub.publish(image_out)

    def object_predict(self,object_data, header, image_np,image):
        image_height,image_width,channels = image.shape
        obj=Detection2D()
        obj_hypothesis= ObjectHypothesisWithPose()

        object_id=object_data[0]
        object_score=object_data[1]
        dimensions=object_data[2]

        obj.header=header
        obj_hypothesis.id = str(object_id)
        obj_hypothesis.score = object_score
        obj.results.append(obj_hypothesis)
        obj.bbox.size_y = int((dimensions[2]-dimensions[0])*image_height)
        obj.bbox.size_x = int((dimensions[3]-dimensions[1] )*image_width)
        obj.bbox.center.x = int((dimensions[1] + dimensions [3])*image_height/2)
        obj.bbox.center.y = int((dimensions[0] + dimensions[2])*image_width/2)
    
        if object_id == 47:
            image_w = image_width
            image_h = image_height
            twist = Twist()
            w = obj.bbox.size_x
            h = obj.bbox.size_y
            x = obj.bbox.center.x
            y = obj.bbox.center.y

            info = ""
            if( w > image_w/2 and h > image_h/2): #front
                twist.linear.x = 0.5
                info += "front"
            else:
                twist.linear.x = -0.5  #back
                info += "back"
            twist.linear.y = 0; 
            twist.linear.z = 0; 
            twist.angular.x = 0; 
            twist.angular.y = 0; 
            if (x > image_w/2):
                twist.angular.z = 0.5 #turn right
                info += "-right"
            else:
                twist.angular.z = -0.5 #turn left
                info += "-left"
            rospy.loginfo("id=%d x=%d y=%d w=%d h=%d", object_id, obj.bbox.center.x, obj.bbox.center.y, obj.bbox.size_x, obj.bbox.size_y)
            self.mbot_teleop_object.publish(twist)
        return obj

def main(args):
    rospy.init_node('detector_node')
    obj=Detector()
    try:
        rospy.spin()
    except KeyboardInterrupt:
        print("ShutDown")
    cv2.destroyAllWindows()

if __name__=='__main__':
    main(sys.argv)

运行效果如下:
机器视觉处理
机器视觉处理

上一篇:01: git & github


下一篇:ROS机器人操作系统:从入门到放弃(八)rospy