BZOJ4140 : 共点圆加强版

假设当前询问点为$(A,B)$,那么它在一个以$(x,y)$为圆心的圆里需要满足:

$(x-A)^2+(y-B)^2\leq x^2+y^2$

$2Ax+2By\geq A^2+B^2$

等价于询问所有圆心与$(2A,2B)$的点积的最小值是否小于$A^2+B^2$。

考虑将修改操作二进制分组,分成$O(\log n)$段连续的修改区间,每一段建立上下凸壳维护,查询时在凸壳上三分。

时间复杂度$O(n\log^2n)$,常数很小。

#include<cstdio>
#include<algorithm>
#define N 500010
int n,m,op,t,q[30],r1[30],r2[30],flag;double A,B,C,D;
struct P{double x,y;}a[N],b[N],q1[N],q2[N];
inline bool cmp1(const P&a,const P&b){return a.x==b.x?a.y>b.y:a.x<b.x;}
inline bool cmp2(const P&a,const P&b){return a.x==b.x?a.y<b.y:a.x<b.x;}
inline void update(){
while(t&&m-q[t]==q[t]-q[t-1])t--;q[++t]=m;
int i,cnt=0,L=q[t-1]+1,R;
for(i=L;i<=m;i++)b[cnt++]=a[i];
std::sort(b,b+cnt,cmp1);
for(q1[R=L]=b[0],i=1;i<cnt;q1[++R]=b[i++])while(R>L&&(q1[R].y-q1[R-1].y)*(b[i].x-q1[R].x)<=(b[i].y-q1[R].y)*(q1[R].x-q1[R-1].x))R--;
r1[t]=R;
std::sort(b,b+cnt,cmp2);
for(q2[R=L]=b[0],i=1;i<cnt;q2[++R]=b[i++])while(R>L&&(q2[R].y-q2[R-1].y)*(b[i].x-q2[R].x)>=(b[i].y-q2[R].y)*(q2[R].x-q2[R-1].x))R--;
r2[t]=R;
}
inline double mul(const P&b){return A*b.x+B*b.y;}
inline void ask1(int l,int r){
int m1,m2;double s1,s2;
while(l<=r){
int len=(r-l)/3;
if((s1=mul(q1[m1=l+len]))<(s2=mul(q1[m2=r-len]))){
if(s1<C){flag=1;return;}
r=m2-1;
}else{
if(s2<C){flag=1;return;}
l=m1+1;
}
}
}
inline void ask2(int l,int r){
int m1,m2;double s1,s2;
while(l<=r){
int len=(r-l)/3;
if((s1=mul(q2[m1=l+len]))<(s2=mul(q2[m2=r-len]))){
if(s1<C){flag=1;return;}
r=m2-1;
}else{
if(s2<C){flag=1;return;}
l=m1+1;
}
}
}
inline void ask(){
flag=0;
for(int i=1;i<=t;i++){
if(B<0)ask1(q[i-1]+1,r1[i]);else ask2(q[i-1]+1,r2[i]);
if(flag)return;
}
}
int main(){
scanf("%d",&n);
while(n--){
scanf("%d%lf%lf",&op,&A,&B);A+=D,B+=D;
if(!op)a[++m].x=A,a[m].y=B,update();
else{
if(!m){puts("No");continue;}
C=A*A+B*B,A+=A,B+=B,ask();
if(flag)puts("No");else puts("Yes"),D++;
}
}
return 0;
}

  

上一篇:python numpy array 的一些问题


下一篇:ArcGIS Server 10.2 实战(一)Asp.net MVC与JSON数据妙用实现动态生成要素图层