[151225] Python3 实现最大堆、堆排序,解决TopK问题

参考资料:

1.算法导论,第6章,堆排序

2. 堆排序学习笔记及堆排序算法的python实现 - 51CTO博客

3. 堆排序 Heap Sort - cnblogs

4. 小根堆实现优先队列:Python实现 -cnblogs

大(小)根堆:是完全二叉树,也是大(小)根树。

大小根堆的差异,主要表现在 比较函数的差异上。

大根堆的操作:

插入(nlog(n)):
概述:把新元素val作为新节点,沿着新节点到根节点的路径,执行一趟冒泡排序。
即:将新元素与父节点的元素进行比较交换,直到父节点不小于子节点为止。 删除(nlog(n)):
目的:删除最大值即根节点root。
(1)首先换首尾节点,然后删除尾结点;
(2)并从根节点出发,进行堆的维护(重构),使堆满足大小次序。 完全二叉树转化为大根堆:
(1)从最后一个具有孩子节的节点开始检查。
(2)如果以该元素为根的子树不是大根堆,进行堆的维护,将该子树调整为大根堆。
(3)依次检查i-1,i-2等节点为根的子树,直到到达树根为止。 堆的维护:
目的:将以当前节点为根节点的子树调整为大根堆。
(1)首先找出当前节点和它的左右孩子节点中的最大值。
maxnode = max(curr,curr_leftchild,curr_right_child)
(2)如果最大节点不是当前节点,则进行交换,并对最大节点开始的子树进行堆维护。

应用:

堆排序:

(1)可以使用优先队列构建堆,然后依次弹出即可。
(2)可以构建优先队列。然后将堆的根(最值)与最右子节点互换,并将堆容量减一。并继续维护,直到容量为2。 已维护的堆的根是最值。。。然后与尾部的进行交换,容量减一,继续维护 TopK问题: (1)使用小根堆记录前K个最大值。
(2)如果新元素大于堆顶,则移除堆顶,并插入新元素。然后进行堆排序/或构建堆!保证正确性

遇到的问题:

循环次数、循环终止条件、循环不变式。
循环和迭代的方式,重写堆维护程序。
大小排序时,注意比较函数别搞混。写出来!!!
程序是让人看的,不要为了优化而优化。
一口吃不了一个胖子,程序应该逐步迭代。 什么时候用@property,什么时候不用?
# !/usr/bin/env python3
# encoding:utf8 left = lambda i:i*2+1
right = lambda i:i*2 +2
parent = lambda i:(i-1)//2 # 与右操作数进行比较
def less(x,y): return x < y
def greater(x,y): return x > y class MyHeap(object):
def __init__(self, l=None,IS_MIN_HEAP=True):
'''初始化
1.如果有数据,初始化数据,并用数据构建堆
2.初始化大根堆或小根堆的比较函数 '''
self._heap=[]
self.cmp = less if IS_MIN_HEAP else greater
if l is not None:
self._heap=list(l)
self.build_heap() #什么时候加@property,什么时候不加?
def top(self):
'''返回堆顶'''
return self.heap[0] @property
def heapsize(self):
'''返回堆的大小'''
return len(self.heap) @property
def heap(self):
'''返回堆的内容'''
return self._heap def __swap(self,i,j):
'''交换以i和j为下标的元素'''
self.heap[i], self.heap[j] = self.heap[j], self.heap[i] def build_heap(self):
'''构建堆
从有叶子节点的最大序号的内部节点往前开始,
对每一个节点进行维护
'''
curr_pos = parent(self.heapsize -1)
max_pos = self.heapsize #从最后一个具有孩子节点的节点(heapsize-1)//2 开始往根调整,构建大根堆
while curr_pos>=0: # 共循环 parent(self.heapsize -1) 次
self.heapify(curr_pos,max_pos)
curr_pos -= 1 def heapify1(self,curr_pos,max_pos):
'''递归的形式,将当前节点为根节点的子树的转为堆
[curr_pos,max_pos)
'''
#最大/最小节点,左孩子,右孩子
mm_pos,lc,rc = curr_pos,left(curr_pos),right(curr_pos) #小根堆比较
#if lc < max_pos and self.heap[lc] < self.heap[mm_pos]:
if lc < max_pos and self.cmp(self.heap[lc], self.heap[mm_pos]):
mm_pos = lc
#if rc < max_pos and self.heap[rc] < self.heap[mm_pos]:
if rc < max_pos and self.cmp(self.heap[rc], self.heap[mm_pos]):
mm_pos = rc # 当最值节点不等于当前节点时,交换节点值,递归维护
if mm_pos != curr_pos:
self.__swap(curr_pos,mm_pos)
self.heapify(mm_pos,max_pos) def heapify(self,curr_pos,max_pos):
'''循环的形式,将当前节点为根节点的子树的转为堆
[curr_pos,max_pos)
''' mm_pos = curr_pos
lc,rc = left(curr_pos),right(curr_pos)
while lc <max_pos:
if lc < max_pos and self.cmp(self.heap[lc], self.heap[mm_pos]):
mm_pos = lc
if rc < max_pos and self.cmp(self.heap[rc], self.heap[mm_pos]):
mm_pos = rc
if mm_pos != curr_pos:
self.__swap(curr_pos,mm_pos)
curr_pos = mm_pos
lc,rc = left(curr_pos),right(curr_pos)
else:
break def push(self,v):
'''插入元素
插入新元素到尾部,并从下往上起泡排序
'''
self.heap.append(v)
curr_pos = self.heapsize - 1
par_pos = parent(curr_pos)
#小根堆比较
#while curr_pos >= 0 and self.heap[curr_pos] < self.heap[par_pos]:
while curr_pos >= 0 and self.cmp(self.heap[curr_pos], self.heap[par_pos]):
self.__swap(curr_pos,par_pos)
curr_pos,par_pos = par_pos,parent(par_pos)
self.heapify(0,self.heapsize) def pop(self):
'''删除元素
1.弹出最值( 首先交换首尾,然后弹出尾部)
2.从根节点维护堆的结构
'''
if self.heapsize == 0:
raise (IndexError,'pop from empty heap')
self.__swap(0,-1)
mv = self.heap.pop()
self.heapify(0,self.heapsize)
return mv def show(self):
'''输出堆信息,注意是按照树有序,不是按行有序'''
print(self.heap) class MinHeap(MyHeap):
def __init__(self,l):
MyHeap.__init__(self,l,IS_MIN_HEAP=True) class MaxHeap(MyHeap):
def __init__(self,l):
MyHeap.__init__(self,l,IS_MIN_HEAP=False) def getTopK(lst,topK):
'''TopK的计算
(1)对前TopK个元素,使用小根堆保存
(2)对后面的元素,依次取出新元素。如果比堆的最小值(top)大,则弹出堆顶,并插入该元素!
'''
if len(lst) < topK:
return None
#前topK个构成小根堆
minheap = MinHeap(lst[:topK])
#后面的逐个进行筛选操作
for v in lst[topK:] :
if minheap.top() < v:
print(minheap.top())
minheap.pop()
minheap.push(v)
minheap.build_heap()
return minheap.heap def HeapSort(lst): def heapify(lst,curr_pos,max_pos):
'''递归的形式,将当前节点为根节点的子树的转为堆
[curr_pos,max_pos)
'''
#左孩子,右孩子,最大/最小节点
mm_pos,lc,rc = curr_pos,left(curr_pos),right(curr_pos)
if lc < max_pos and lst[lc] < lst[mm_pos]:
mm_pos = lc
if rc < max_pos and lst[rc] < lst[mm_pos]:
mm_pos = rc
# 当最值节点不等于当前节点时,交换节点值,递归维护
if mm_pos != curr_pos:
lst[curr_pos],lst[mm_pos] = lst[mm_pos],lst[curr_pos]
heapify(lst,mm_pos,max_pos) curr_pos = (len(lst)-1)//2
max_pos = len(lst)
#从最后一个具有孩子节点的节点(heapsize-1)//2 开始往根调整,构建大根堆
while curr_pos>=0: # 共循环 parent(self.heapsize -1) 次
heapify(lst,curr_pos,max_pos)
curr_pos -= 1 # ## 当用于排序时,添加上一下的语句。注意,需要保证不再进行插入运算?!反正顺序刚反过来
# #已维护的堆的根是最值。。。然后与尾部的进行交换,容量减一,继续维护
while max_pos > 1: #共循环 self.heapsize-1 次
lst[0],lst[max_pos-1] = lst[max_pos-1],lst[0] #堆首尾交换
max_pos -= 1 #容量减去1
heapify(lst,0, max_pos) #维护堆 return lst def test():
lst=[1,23,-6,9,7]
lst=[1,23,-6,9,7,-2,4,5] print(lst) for i in range(1,8):
print("Top{}:{}".format(i,getTopK(lst,i))) print("小根堆:")
mpq = MinHeap(lst)
mpq.show()
for i in range(len(lst)):
print(mpq.pop(),)
print("\n\n") print("大根堆:")
mpq = MaxHeap(lst)
mpq.show()
for i in range(len(lst)):
print(mpq.pop(),)
print("\n\n") print(HeapSort(lst))
print("Done!") if __name__=='__main__':
test()
上一篇:【跟着*学Pandas】 -Get list from pandas DataFrame column headers - Pandas 获取列名


下一篇:转Delphi中Memo显示行号列号