In some country there are exactly n cities and m bidirectional roads connecting the cities. Cities are numbered with integers from 1 to n. If cities a and b are connected by a road, then in an hour you can go along this road either from city ato city b, or from city b to city a. The road network is such that from any city you can get to any other one by moving along the roads.
You want to destroy the largest possible number of roads in the country so that the remaining roads would allow you to get from city s1 to city t1 in at most l1 hours and get from city s2 to city t2 in at most l2 hours.
Determine what maximum number of roads you need to destroy in order to meet the condition of your plan. If it is impossible to reach the desired result, print -1.
Input
The first line contains two integers n, m (1 ≤ n ≤ 3000, ) — the number of cities and roads in the country, respectively.
Next m lines contain the descriptions of the roads as pairs of integers ai, bi (1 ≤ ai, bi ≤ n, ai ≠ bi). It is guaranteed that the roads that are given in the description can transport you from any city to any other one. It is guaranteed that each pair of cities has at most one road between them.
The last two lines contains three integers each, s1, t1, l1 and s2, t2, l2, respectively (1 ≤ si, ti ≤ n, 0 ≤ li ≤ n).
Output
Print a single number — the answer to the problem. If the it is impossible to meet the conditions, print -1.
Examples
Input
5 4 1 2 2 3 3 4 4 5 1 3 2 3 5 2
Output
0
Input
5 4 1 2 2 3 3 4 4 5 1 3 2 2 4 2
Output
1
Input
5 4 1 2 2 3 3 4 4 5 1 3 2 3 5 1
Output
-1
题意
第一行输入n,m;表示n个点m条边。
下面是给出的m条边。
题意:给定n个点m条边的无向图(边权全为1),让你去掉最多的边使得d(s1, t1) <= l1 && d(s2, t2) <= l2,若不能满足输出-1,反之输出可以去掉的最多边数。
思路:SPFA预处理所有点之间的距离。求出在满足d(s1, t1) <= l1 && d(s2, t2) <= l2的前提下,路径需要的最少边数ans,答案就是m - ans。
方法是:用dist[i][j]存储最短路。枚举d(s1, t1) 和 d(s2, t2)这两条路径上可能重合的路径d(i, j)
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define INF 0x3f3f3f3f
#define MAXN (3000+10)
using namespace std;
struct Edge{
int from, to, next;
};
Edge edge[MAXN*MAXN];
int head[MAXN], edgenum;
bool vis[MAXN];
int dist[MAXN][MAXN];
void init(){
edgenum = 0;
memset(head,-1,sizeof(head));
}
void addEdge(int u, int v)
{
Edge E = {u, v, head[u]};
edge[edgenum] = E;
head[u] = edgenum++;
}
void SPFA(int s, int *d)
{
queue<int> Q;
memset(vis,false,sizeof(false));
d[s] = 0; vis[s] = true; Q.push(s);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
vis[u] = false;
for(int i = head[u]; i != -1; i = edge[i].next)
{
Edge E = edge[i];
if(d[E.to] > d[u] + 1)
{
d[E.to] = d[u] + 1;
if(!vis[E.to])
{
vis[E.to] = true;
Q.push(E.to);
}
}
}
}
}
int main()
{
init();
int n,m;
cin>>n>>m;
for(int i=1; i<=m; i++)
{
int a,b;
cin>>a>>b;
addEdge(a,b);
addEdge(b,a);
}
memset(dist,INF,sizeof(dist));
for(int i=1; i<=n; i++)
{
SPFA(i,dist[i]);
}
//cout<<dist[2][5]<<endl;
int s1,t1,l1;
int s2,t2,l2;
cin>>s1>>t1>>l1;
cin>>s2>>t2>>l2;
if(dist[s1][t1]>l1||dist[s2][t2]>l2)
{
cout<<"-1"<<endl;
}
else
{
int sum=dist[s1][t1]+dist[s2][t2];
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
if(dist[s1][i]+dist[i][j]+dist[j][t1]<=l1&&dist[s2][i]+dist[i][j]+dist[j][t2]<=l2)
{
sum=min(sum,(dist[s1][i]+dist[i][j]+dist[j][t1]+dist[s2][i]+dist[j][t2]));
}
if(dist[s1][i]+dist[i][j]+dist[j][t1]<=l1&&dist[s2][j]+dist[j][i]+dist[i][t2]<=l2)
{
sum=min(sum,(dist[s1][i]+dist[i][j]+dist[j][t1]+dist[s2][j]+dist[i][t2]));
}
}
}
cout<<m-sum<<endl;
}
}