一 web 工作方式的几个概念
以下几个均是服务器端的概念。
Request:用户请求的信息,用来解析用户的请求信息,包括 post、get、cookie、url 等信息。
Response:服务器需要反馈给客户端的信息。
Conn:用户的每次请求链接。
Handler:处理请求和生成返回信息的处理逻辑。
二 http 包运行机制
Go 实现 Web 服务的工作模式的流程图
http包执行流程
1 创建 Listen Socket,监听指定的端口, 等待客户端请求到来。
2 Listen Socket 接受客户端的请求,得到 Client Socket,接下来通过 Client Socket 与客户端通信。
3 处理客户端的请求。
首先从 Client Socket 读取 HTTP 请求的协议头,如果是 POST 方法,还可能要读取客户端提交的数据,然后交给相应的 handler 处理请求,handler 处理完毕准备好客户端需要的数据。通过 Client Socket 写给客户端。
整个过程需要了解清楚下面三个问题。
-
如何监听端口?
-
如何接收客户端请求?
-
如何分配 handler?
Go 是通过一个函数 ListenAndServe 来处理这些事情的。
首先,初始化一个 server 对象,然后调用 ListenAndServe() 函数。
func ListenAndServe(addr string, handler Handler) error {
server := &Server{Addr: addr, Handler: handler}
return server.ListenAndServe()
}
其次,调用了 net.Listen("tcp", addr),也就是底层用 TCP 协议搭建了一个服务,然后监控我们设置的端口。然后调用 srv.Serve() 函数,对 http 请求进行处理。
func (srv *Server) ListenAndServe() error {
addr := srv.Addr
if addr == "" {
addr = ":http"
}
ln, err := net.Listen("tcp", addr)
if err != nil {
return err
}
return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
}
下面的代码可以看到整个的 http 处理过程。
func (srv *Server) Serve(l net.Listener) error {
defer l.Close()
if fn := testHookServerServe; fn != nil {
fn(srv, l)
}
var tempDelay time.Duration // how long to sleep on accept failure
if err := srv.setupHTTP2_Serve(); err != nil {
return err
}
srv.trackListener(l, true)
defer srv.trackListener(l, false)
baseCtx := context.Background() // base is always background, per Issue 16220
ctx := context.WithValue(baseCtx, ServerContextKey, srv)
for {
rw, e := l.Accept()
if e != nil {
select {
case <-srv.getDoneChan():
return ErrServerClosed
default:
}
if ne, ok := e.(net.Error); ok && ne.Temporary() {
if tempDelay == 0 {
tempDelay = 5 * time.Millisecond
} else {
tempDelay *= 2
}
if max := 1 * time.Second; tempDelay > max {
tempDelay = max
}
srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
time.Sleep(tempDelay)
continue
}
return e
}
tempDelay = 0
c := srv.newConn(rw)
c.setState(c.rwc, StateNew) // before Serve can return
go c.serve(ctx)
}
}
这个函数里面有一个for{},首先通过 Listener 接收请求,其次创建一个 Conn,最后单独开了一个 goroutine,把这个请求的数据当做参数扔给这个 conn 去服务:go c.serve()。这个就是高并发体现了,用户的每一次请求都是在一个新的 goroutine 去服务,相互不影响。
那么如何具体分配到相应的函数来处理请求呢?见下面代码。
func (c *conn) serve(ctx context.Context) {
c.remoteAddr = c.rwc.RemoteAddr().String()
ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
defer func() {
if err := recover(); err != nil && err != ErrAbortHandler {
const size = 64 << 10
buf := make([]byte, size)
buf = buf[:runtime.Stack(buf, false)]
c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
}
if !c.hijacked() {
c.close()
c.setState(c.rwc, StateClosed)
}
}()
if tlsConn, ok := c.rwc.(*tls.Conn); ok {
if d := c.server.ReadTimeout; d != 0 {
c.rwc.SetReadDeadline(time.Now().Add(d))
}
if d := c.server.WriteTimeout; d != 0 {
c.rwc.SetWriteDeadline(time.Now().Add(d))
}
if err := tlsConn.Handshake(); err != nil {
c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
return
}
c.tlsState = new(tls.ConnectionState)
*c.tlsState = tlsConn.ConnectionState()
if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
if fn := c.server.TLSNextProto[proto]; fn != nil {
h := initNPNRequest{tlsConn, serverHandler{c.server}}
fn(c.server, tlsConn, h)
}
return
}
}
// HTTP/1.x from here on.
ctx, cancelCtx := context.WithCancel(ctx)
c.cancelCtx = cancelCtx
defer cancelCtx()
c.r = &connReader{conn: c}
c.bufr = newBufioReader(c.r)
c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
for {
w, err := c.readRequest(ctx)
if c.r.remain != c.server.initialReadLimitSize() {
// If we read any bytes off the wire, we're active.
c.setState(c.rwc, StateActive)
}
if err != nil {
const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n"
if err == errTooLarge {
// Their HTTP client may or may not be
// able to read this if we're
// responding to them and hanging up
// while they're still writing their
// request. Undefined behavior.
const publicErr = "431 Request Header Fields Too Large"
fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
c.closeWriteAndWait()
return
}
if isCommonNetReadError(err) {
return // don't reply
}
publicErr := "400 Bad Request"
if v, ok := err.(badRequestError); ok {
publicErr = publicErr + ": " + string(v)
}
fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
return
}
// Expect 100 Continue support
req := w.req
if req.expectsContinue() {
if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
// Wrap the Body reader with one that replies on the connection
req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
}
} else if req.Header.get("Expect") != "" {
w.sendExpectationFailed()
return
}
c.curReq.Store(w)
if requestBodyRemains(req.Body) {
registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
} else {
if w.conn.bufr.Buffered() > 0 {
w.conn.r.closeNotifyFromPipelinedRequest()
}
w.conn.r.startBackgroundRead()
}
// HTTP cannot have multiple simultaneous active requests.[*]
// Until the server replies to this request, it can't read another,
// so we might as well run the handler in this goroutine.
// [*] Not strictly true: HTTP pipelining. We could let them all process
// in parallel even if their responses need to be serialized.
// But we're not going to implement HTTP pipelining because it
// was never deployed in the wild and the answer is HTTP/2.
serverHandler{c.server}.ServeHTTP(w, w.req)
w.cancelCtx()
if c.hijacked() {
return
}
w.finishRequest()
if !w.shouldReuseConnection() {
if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
c.closeWriteAndWait()
}
return
}
c.setState(c.rwc, StateIdle)
c.curReq.Store((*response)(nil))
if !w.conn.server.doKeepAlives() {
// We're in shutdown mode. We might've replied
// to the user without "Connection: close" and
// they might think they can send another
// request, but such is life with HTTP/1.1.
return
}
if d := c.server.idleTimeout(); d != 0 {
c.rwc.SetReadDeadline(time.Now().Add(d))
if _, err := c.bufr.Peek(4); err != nil {
return
}
}
c.rwc.SetReadDeadline(time.Time{})
}
}
处理器分配代码。
func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
handler := sh.srv.Handler
if handler == nil {
handler = DefaultServeMux
}
if req.RequestURI == "*" && req.Method == "OPTIONS" {
handler = globalOptionsHandler{}
}
handler.ServeHTTP(rw, req)
}
conn 首先会解析 request:c.readRequest(),然后获取相应的handler:handler := sh.srv.Handler。也就是函数 ListenAndServe 的第二个参数,当传递的是 nil,也就是为空时,那么默认获取 handler = DefaultServeMux。那么这个变量用来做什么的呢?这个变量就是一个路由器,它用来匹配 url 跳转到其相应的 handle 函数,那么这个有设置过吗?有,当我们调用 http.HandleFunc("/", sayhelloName) 时设置的。它的作用就是注册请求/的路由规则,当请求uri为"/",路由就会转到函数 sayhelloName,DefaultServeMux会调用 ServeHTTP 方法,这个方法内部其实就是调用 sayhelloName 本身,最后通过写入response的信息反馈到客户端。
整个流程如下。